8. Data Wrangling with pandas#

8.1. Introduction: Why It’s So Important to Get Data Management Right#

8.1.1. The Case of “Genomic Signatures to Guide the Use of Chemotherapeutics”#

In 2006, a study “Genomic Signatures to Guide the Use of Chemotherapeutics” was published in Nature Medicine. This study tackles the question of why chemotherapy works well for some cancer patients and less well for others. The authors claimed that they could predict whether and how treatments would work for a patient based on the sequence of chemicals in the DNA in the patient’s cancer cells. This study got a lot of attention as a major breakthrough in cancer treatments. The hope was to use genomic data to tailor a treatment regime for individual patients that maximizes the likelihod that the treatment would be effective.

Unfortunately, as you can see on the journal’s website for this article, the study has been retracted. The story of how this study came into question, and the damage it did before it was retracted, is described by Keith Baggerly in his talk “The Importance of Reproducibility in High-Throughput Biology: Case Studies in Forensic Bioinformatics”:

from IPython.display import IFrame
IFrame(src="https://www.youtube.com/embed/7gYIs7uYbMo", width="560", height="315")

The slides for this talk are available here. In short, Baggerly and his coauthor Kevin R. Coombes attempted to reproduce the findings in the Potti et al study, and they were unable to do so. There is a difference between reproduction and replication: reproducing a study involves using the same data used in the original study and writing code that yields the exact same results; replication involves repeating the study using new data. While replication is an essential practice for establishing the validity of a study, replication is also a higher standard than reproduction. If a study cannot be reproduced, then there must have been errors in the process collecting and cleaning the raw data that led to the publication of incorrect results.

After deciding to replicate the Potti et al article, Baggerly and Coombes were able to get a copy of the raw data that were used in the study, but they did not find scripts or documentation that described the steps the original study took to clean the raw data. That’s because there were no scripts and no documentation: the data were cleaned on the fly, probably with a point-and-click interface like Microsoft Excel, with no records of what was done to the data.

Without having good documentation available that explains how research was done, Baggerly and Coombes had to resort to “forensics”. They started with the results and the raw data, and they inferred what the researchers must have done to obtain the reported results from the raw data. They were alerted to potential problems with the study when they tried to replicate the finding that there is a clear difference between two types of drugs, as shown in the graphic on slide 13 of Baggerly’s slide deck. It should have been an easy finding to replicate. Instead they found significant overlap between the two drugs, as shown in the graphic on slide 14. They responded by trying to reproduce exactly what was done to the raw data in the original study to produce the first finding. After exhausting all possible valid data management steps, they started making mistakes on purpose to see if one of those mistakes would replicate the published results.

Baggerly and Coombes found that the authors of the original paper made an error in which the codes for each reported gene were off by one. That is, the data for each gene is matched to the label for the gene whose data exists one row above. This error happened, according to Baggerly’s best guess, because the software that the authors used requires the inputted data file to NOT have a header row for column names. But they seemed to just copy and paste the data, along with the header row. A second result that Baggerly says should “bother you” is that, on the heat map on slide 29, Baggery and Coombs matched 6 of the 7 heat maps despite the fact that they only matched the reported gene names for 3 of the 7 drugs. Therefore they would expect to reproduce the heat map for only these 3 drugs. Baggerly doesn’t know why they matched the heat maps for the other 3 drugs despite the fact that they are using the wrong data.

A second discrepancy that raises a red flag for Baggerly is the plot showing the sensitive and resistant patients, as compared to the analogous plot from the paper that introduced the test dataset. The plot shows 13 sensitive and 11 resistant samples, whereas the paper that introduced the data shows 11 sensitive and 13 resistant samples. Baggery believes that the authors mixed up the 0 and 1, indicating sensitive and resistant, in the spreadsheet.

In short, Baggerly and Coombes were only able to reproduce the findings in the Potti et al study by making “small” mistakes on purpose. When I say small, I mean that these sorts of errors can occur frequently when using a point-and-click interface for data management and a copy-and-paste method for transfering data. These errors also occur without informing the user of any errors. But in practice these small errors have profound impacts on the results of the study. If those results are taken seriously and applied outside of the specific study, these mistakes can do a lot of harm in the world.

In the case of the Potti et al study, while Baggerly and Coombes were investigating the paper, drug trials began at Duke University based on the results of the study. The treatment was administered to the patients with childhood leukemia. Because of the mistake that swaped the 0s and 1s, the treatment was administered to patients who are resistant to it, will not benefit from it, and may in fact be harmed by it.

Baggerly and Coombes wrote a report detailing these inconsistencies and a few others - there’s evidence that some samples were reused 2, 3, or 4 times, and 4 genes appear in the results despite the fact that they are not included in the test data - and sent the report to Nature Medicine. Their report caused Duke to stop the clinical trials of these drugs pending an investigation. But a short while later the trials were restarted, with the statement that the investigation had “strengthened confidence in this approach.” The investigators refused to share their findings. Baggery and Coombs has to issue a freedom of informatiom act (FOIA) request to see the results of the investigation, only to find that no mention was made of the problematic drugs. Writing directly to Duke yielded no response. They had to get many prominent biostatisticians to sign a joint letter of concern. The letter got some attention in the media, but mostly because it was revealed that the principal investigator of the flawed studies lied on his CV about being a Rhodes scholar! Only after the letter generated a serious amount of negative media attention for Duke did the trials get suspended.

8.1.2. The Reproducible Research Movement#

There are four lessons we can learn from that Baggerly and Coombes’s work to reassess the Potti et al. First, mistakes at the data management stage happen all the time, and when the environment uses a point-and-click interface the errors are easier to miss because of a lack of a sufficient error system. Second, small errors can have big effects. It’s easy to confuse categories when they are labeled with arbitrary numbers instead of words, but if that confusion results in mixing up the treatment and control groups then every effect reported in the study will have the incorrect sign, and all of the conclusions we draw will be the exact opposite of the truth. Third, it is common for people who do work with data to fail to keep records of their code and the steps they used to manipulate the raw data prior to an analysis, and without documentation, it can be extremely difficult to impossible to catch errors in the data management process. Fourth, while most scientists are hopefully open to seeing and admitting their mistakes, there aren’t a lot of incentives in academia and other fields to make the research stream more transparent.

In “The Reproducible Research Movement in Statistics”, Victoria Stodden describes the problem:

The research system must offer rewards for reproducible research at every level from departmental decisions to grant funding and journal publication, incorporating notions of code and data sharing into institutional promotion and hiring and grant proposal review. The current academic research system places the primary emphasis on publication and little on reproducibility. This has the effect of penalizing those researchers that produce reproducible computational research. Software development has been characterized as support of science rather than doing real science. The result is that scientists are discouraged from spending time writing, testing, or releasing code. With the ever-increasing pervasiveness of computation and software across the research landscape, such attitudes and practices must change (p.1069-1070).

As a result of these issues, the last decade has seen a remarkable cultural shift in fields that use data towards making data management easier and more transparent. These efforts are often called part of the “reproducible research movement”. The movement involves two efforts: first, a greater push to develop software that makes it easier to clean data and to share and communicate code; second, a drive to change standards of best practice in fields that use data. Since Victoria Stodden’s article in 2013, data science has incorporated both parts of the reproducible research movement. In Python, the pandas package makes it much easier to clean data using code that is intuitive and relatively easy to follow, and Jupyter notebooks combine code, results, and text that explains the code in one document. Modern data science requires practioners to share or be ready to share their code, often in a notebook.

8.1.3. The Origin of pandas#

The pandas package in Python is written and maintained by Wes McKinney, who also wrote Python for Data Analysis. On the pandas team page, under governance, McKinney is listed as the pandasBenevolent Dictator for Life”. The phrase “Benevolent Dictator for Life” is given to leaders of important open-source projects, and originated with Guido van Rossum, the creator of Python.

McKinney developed pandas in 2008 and first released the project publicly in 2009. Though not explicitly presented as a contribution to the reproducible research movement, the goal of pandas was to replace existing tools for data manipulation that had led to major mistakes in research, as was the case for the Potti et al article. According to this profile of Wes McKinney in Quartz Magazine, pandas “makes it so that data analysis tasks that would have taken 50 complex lines of code in the past now only take 5 simple lines, because McKinney already did the heavy lifting.” Specifically:

Python was missing some key features that would make it a good language for data analysis. For example, it was challenging to import CSV files (one of the most common formats for storing datasets). It also didn’t have an intuitive way of dealing with spreadsheet-like datasets with rows and columns, or a simple way to create a new column based on existing columns.

Pandas addressed these problems. David Robinson, a data scientist at Stack Overflow, explained the importance of it in technical terms. “The idea of treating in memory data like you would a SQL table is incredibly powerful,” he says. “By introducing the ‘DataFrame,’ Pandas made it possible to do intuitive analysis and exploration in Python that wasn’t possible in other languages like Java. And is still not possible.”

That is, pandas, like SQL, is a declarative language, not a procedural one. Simple functions and methods in pandas call underlying imperative code that performs the requested action by operating on vectors, matrices, and arrays. pandas as much as possible uses numpy functions to perform actions as quickly as possible (by using numpy’s vectorized code). In short, the motivation for the development of pandas is to make data manipulation as straightforward as possible and for those functions to run as quickly as possible.

pandas is an extremely popular package for data science, and the Quartz article asserts that much of the growth in popularity that Python has experienced on Stack Overflow can be attibuted to pandas. While pandas is currently the 34th most frequently downloaded Python package, it is certainly one of the most frequently downloaded for data science applications in Python.

8.1.4. Tidy Data#

In Module 7, we discussed the concept of Tidy Data as described by Hadley Wickham, founder of RStudio and creator of the tidyverse packages in R, in the article “Tidy Data”. Tidy Data is an organizational schema for data that makes most kinds of data analysis possible. To qualify as tidy, data must follow these rules:

  1. Each [feature] forms a column.

  2. Each observation forms a row.

  3. Each type of observational unit forms a table (p. 2).

In addition, even when data are arranged in a single table in which records are rows, features are columns, and all records are of like units, there are many steps a researcher should take to manipulate the data to make a dataframe easier to work with. Hadley Wickham defines four essential “verbs” of data manipulation:

  • Filter: subsetting or removing observations based on some condition.

  • Transform: adding or modifying variables. These modifications can involve either a single variable (e.g., log-transformation), or multiple variables (e.g., computing density from weight and volume).

  • Aggregate: collapsing multiple values into a single value (e.g., by summing or taking means).

  • Sort: changing the order of observations (p. 13).

This philosophy of data management is built into the tidyverse packages for R, but it also forms a guiding principle for data manipulation with pandas because pandas includes tools to accomplish all of these tasks. In fact, Hadley Wickham and Wes McKinney are currently working together on a project called https://ursalabs.org/, which aims to bridge the R-Python divide and to develop platform-independent data science tools.

8.2. Example: The American National Election Study#

The American National Election Study (ANES) is a massive public opinion survey conducted after every national election. It is one of the greatest sources of data available about the voting population of the United States. It contains far more information than a typical public opinion poll. Iterations of the survey contain thousands of features from thousands of respondents, and examines people’s attitudes on the election, the candidates, the parties, it collects massive amounts of demographic information and other characteristics from voters, and it records people’s opinions on a myriad of political and social issues.

Prior to each election the ANES conducts a “pilot study” that asks many of the questions that will be asked on the post-election survey. The idea is to capture a snapshot of the American electorate prior to the election and to get a sense of how the survey instrument is working so that adjustments can be made in time. Here we will work with the 2019 ANES pilot data. To understand the features and the values used to code responses, the data have an associated questionnaire and codebook. The pilot data were collected in December 2019 and contain 900 features collected from 3,165 respondents.

Despite a great dfeal of pre-processing on the part of the data authors, the data is not currently in form we can analyze. We will use the tools available in pandas to manipulate the data and prepare it for analysis. The data are available in CSV, SAS, and Stata formats. I put the CSV version on my Github repository so that we can have easier access to it, but I encourage you to access the data yourself by registering for a free account on electionstudies.org.

We start by loading the numpy and pandas packages, along with some additional packages and modules to perform some specialized tasks. Please use pip install or conda install to install these packages if you have not yet done so:

import numpy as np
import pandas as pd
import sidetable
import warnings
warnings.filterwarnings('ignore')
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[2], line 3
      1 import numpy as np
      2 import pandas as pd
----> 3 import sidetable
      4 import warnings
      5 warnings.filterwarnings('ignore')

ModuleNotFoundError: No module named 'sidetable'

Then we load the data with pd.read_csv():

anes = pd.read_csv("https://github.com/jkropko/DS-6001/raw/master/localdata/anes_pilot_2019.csv")

These data are technically in tidy format because the records are stored in the rows, the features are stored in the columns, and the rows all represent individual people. But there are still problems that will keep us from being able to use the data in analyses. There are more features here than we can manage in a feasible amount of time. Many of the features have names that we might want to change to be more descriptive, and use arbitrary numeric codes to stand in for categories. If we look at the codebook, we will also see that negative numbers in the cells represent missing datapoints, and unless we take steps to replace these datapoints they will be read as valid numeric data. We will use the tools in pandas to manipulate the data so that we keep only the features of interest, labels throughout the data are intuitive and readable, columns have the correct data type, and missing datapoints are coded as missing.

8.3. Tools for Understanding the Data and Diagnosing Problems#

Before we can start manipulating the data, we need to be able to effectively look at the data to catch the problems that we need to address. All of these tools exist as methods or attributes of a pandas dataframe or of a specific column of a dataframe. This discussion reviews some of the material covered in Module 2, because these methods are useful for assessing both whether a data file loaded properly and for seeing the problems that still exist after the data have been loaded.

First, to see the dimensions of a dataframe and the dataframe’s memory usage, we can use the .info() method:

anes.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3165 entries, 0 to 3164
Columns: 900 entries, version to flag_state
dtypes: float64(223), int64(600), object(77)
memory usage: 21.7+ MB

In this case, the anes data has 3,165 rows and 900 columns, and takes up a little bit more than 21.7 MB of memory. The .info() output also tells us that of the 900 columns, 223 have float (numeric with decimals) valued data, 600 have integer valued data, and 77 have object values, which refers to strings or categories.

Viewing the data table itself can be extremely useful. As we discussed in module 2, however, the default behavior limits the number of rows and columns that can be displayed in a dataframe. I find it useful to turn off the limit on the number of columns that can be displayed:

pd.set_option('display.max_columns', None) 

Now we can see all of the columns in any dataframe we call. With 900 columns, there will be quite a lot of sidescrolling, and it will be difficult to find any one column in particular. Viewing the data will become more useful once we limit the columns we will include in the data. To see the first few rows, use the .head(n) method, where n is the number of rows from the top to display. The first three rows, for example, are

anes.head(3)
version caseid weight weight_spss form follow reg1a reg1b liveurban youthurban placeid1a placeid1a_t placeid1b placeidimport turnout16a turnout16a1 turnout16b turnout16c vote16 turnout18a turnout18a1 particip_1 particip_2 particip_3 particip_4 particip_5 particip_6 particip_7 particip_8 particip_9 fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales vote20dem vote20cand vote20cand2 electable vote20jb vote20ew vote20bs cvote2020 tsplit1 contact1a contact1b contact2a contact2b contact3 contact4m_1 contact4m_2 contact4m_3 apppres5 frnpres5 immpres5 econpres5 apppres7 frnpres7 immpres7 econpres7 mip econnow finworry confecon improve1 national1 national2 conspire1 conspire2 conspire3 taxecon billtax trade1 trade2 trade3 trade4 richpoor2 guarinc lcself lcd lcr pop1 pop2 pop3 corrupt immignum refugees dreamstr dreamer dreamstr1 dreamstr2 wall5 wall7 pathway preturn popen release1 release2 famsep tchina trussia tiran tmexico tjapan hlthcare1 hlthcare2 abortion1 abortion2 freecol loans diversity5 diversity7 language buyback gw1 gw2 knowopioid1 knowopioid2 opioiddo sentence prek demo4 experts science exphelp elite1 elite2 elite3 elite4 ukraine1 ukraine2 excessive rural1alt1 rural1alt2 rural2alt1 rural2alt2 rural3alt1 rural3alt2 rural4alt1 rural4alt2 conf_unemp unemp conf_interfere interfere conf_autism autism1 autism2 conf_gmo gmo1 gmo2 conf_warm warm conf_illegal illegal impeach1 impeach2 pk_cjus pk_cjus_correct pk_germ pk_germ_correct pk_sen pk_spend pk_geer cheat pid7x pid1d pid2d pid1r pid2r pidstr pidlean ngun shooting dem_activduty milyears milyr1 milyr2 milyr3 milyr4 milyr5 milyr6 combat harass1a harass1b rr1 rr2 rr3 rr4 health1a health1b hospital feet inches nweight bmi disable1 disable2 disable3 disable4 disable5 disable6 smoker1 smoker2 exercise relig1a relig1a_txt relig2a att1 att2 att3 relig1b relig1b_t relig2b relig3b relig3b_t attother exptravel_ever exphomesch expfarm expffood expconvert expholiday explie expshark expdivorce exparrest expoverdose expdefault exppubasst exphybrid expmistake explightning exptravel_year expindian exphunt expflag exppublib explottery expshoponline exppubtrans expfight expavoid expknowimmig expknowtrans expbuyusa expretire expcolldebt expknowpris socmed_1 socmed_2 socmed_3 socmed_4 socmed_5 socmed_6 socmed_7 socmed_8 socmed_9 socmed_t facebook1 facebook2 facebook3 twitter1 twitter2 twitter3 instagram1 instagram2 instagram3 reddit1 reddit2 reddit3 youtube1 youtube2 youtube3 snapchat1 snapchat2 snapchat3 tiktok1 tiktok2 tiktok3 raceid racework whitejob race_sub1 race_sub2 voterid1 voterid2 serious photo1 photo2 photo3 photo4 reinterview birthyr gender educ marstat child18 race employ employ_t faminc_new votereg ideo5 pid7 newsint presvote16post presvote16post_t pew_bornagain pew_religimp pew_churatd pew_prayer religpew religpew_t religpew_protestant religpew_protestant_t inputstate zipCode FIPCounty region EnrollmentDate CompletedSurveys qualityControl_overall_scale tsmart_P2012 tsmart_G2012 tsmart_P2016 tsmart_G2016 tsmart_P2018 tsmart_G2018 abortion1_skp abortion2_skp apppres5_skp apppres7_skp att1_skp att2_skp att3_skp attother_skp autism1_skp autism2_skp billtax_skp buyback_skp cexp1_grid_skp cexp2_grid_skp cheat_skp combat_skp confecon_skp conspire1_skp conspire2_skp conspire3_skp contact1a_skp contact1b_skp contact2a_skp contact2b_skp contact3_skp corrupt_skp cvote2020_skp dem_activduty_skp demo4_skp disable_grid_skp diversity5_skp diversity7_skp dreamer_skp econnow_skp econpres5_skp econpres7_skp electable_skp elite1_skp elite2_skp elite3_skp elite4_skp excessive_skp exercise_skp exp1_grid_skp exp2_grid_skp experts_skp exphelp_skp facebook1_skp facebook2_skp facebook3_skp finworry_skp follow_skp freecol_skp frnpres5_skp frnpres7_skp ftasian_skp ftbiden_skp ftblack_skp ftbritain_skp ftbuttigieg_skp ftcanada_skp ftchina_skp ftfrance_skp ftgermany_skp ftharris_skp fthisp_skp ftice_skp ftillegal_skp ftimmig1_skp ftimmig2_skp ftiran_skp ftisrael_skp ftjapan_skp ftjournal_skp ftmexico_skp ftmuslim_skp ftnato_skp ftnkorea_skp ftnra_skp ftobama_skp ftpales_skp ftrussia_skp ftsanders_skp ftsaudi_skp fttrump_skp ftturkey_skp ftukraine_skp ftun_skp ftwarren_skp ftwhite_skp gmo1_skp gmo2_skp guarinc_skp gw_grid_skp harass1a_skp harass1b_skp health1a_skp health1b_skp hlthcare1_skp hlthcare2_skp hospital_skp illegal_skp immignum_skp immpres5_skp immpres7_skp impeach1_skp impeach2_skp improve1_skp instagram1_skp instagram2_skp instagram3_skp interfere_skp knowopioid1_skp knowopioid2_skp language_skp lc_grid_skp liveurban_skp loans_skp milyears_skp milyr_skp mip_skp national1_skp national2_skp ngun_skp opioiddo_skp particip_skp path_grid_skp pid1d_skp pid1r_skp pidlean_skp pidstr_skp pk_cjus_skp pk_geer_skp pk_germ_skp pk_sen_skp pk_spend_skp placeid1a_skp placeid1b_skp placeidimport_skp pop_grid_skp prek_skp raceid_skp racework_skp reddit1_skp reddit2_skp reddit3_skp refugees_skp reg1a_skp reg1b_skp reinterivew_skp relig1a_skp relig1b_skp relig2a_skp relig2b_skp relig3b_skp rexp1_grid_skp rexp2_grid_skp richpoor2_skp rr_grid_skp rural1alt1_skp rural1alt2_skp rural2alt1_skp rural2alt2_skp rural3alt1_skp rural4alt1_skp rural4alt2_skp science_skp sentence_skp serious_skp shooting_skp smoker1_skp smoker2_skp snapchat1_skp snapchat2_skp snapchat3_skp socmed_skp tall_skp taxecon_skp threat_grid_skp tiktok1_skp tiktok2_skp tiktok3_skp trade1_skp trade2_skp trade3_skp trade4_skp tsplit1_skp turnout16a_skp turnout16b_skp turnout16c_skp turnout18a_skp twitter1_skp twitter2_skp twitter3_skp ukraine1_skp ukraine2_skp unemp_skp vote16_skp vote20bs_skp vote20cand2_skp vote20cand_skp vote20dem_skp vote20ew_skp vote20jb_skp voterid1_skp voterid2_skp wall7_skp wall5_skp warm_skp nweight_skp whitejob_skp youthurban_skp youtube1_skp youtube2_skp youtube3_skp rural3alt2_skp follow_page_timing reg1a_page_timing reg1b_page_timing liveurban_page_timing youthurban_page_timing placeid1a_page_timing placeid1b_page_timing placeidimport_page_timing turnout16a_page_timing turnout16b_page_timing turnout16c_page_timing vote16_page_timing turnout18a_page_timing particip_page_timing fttrump_page_timing ftobama_page_timing ftbiden_page_timing ftwarren_page_timing ftsanders_page_timing ftbuttigieg_page_timing ftharris_page_timing ftblack_page_timing ftwhite_page_timing fthisp_page_timing ftasian_page_timing ftmuslim_page_timing ftillegal_page_timing ftimmig1_page_timing ftimmig2_page_timing ftjournal_page_timing ftnato_page_timing ftun_page_timing ftice_page_timing ftnra_page_timing ftchina_page_timing ftnkorea_page_timing ftmexico_page_timing ftsaudi_page_timing ftukraine_page_timing ftiran_page_timing ftbritain_page_timing ftgermany_page_timing ftjapan_page_timing ftisrael_page_timing ftfrance_page_timing ftcanada_page_timing ftturkey_page_timing ftrussia_page_timing ftpales_page_timing vote20dem_page_timing vote20cand_page_timing vote20cand2_page_timing electable_page_timing vote20jb_page_timing vote20ew_page_timing vote20bs_page_timing cvote2020_page_timing tsplit1_page_timing contact1a_page_timing contact1b_page_timing contact2a_page_timing contact2b_page_timing contact3_page_timing apppres5_page_timing frnpres5_page_timing immpres5_page_timing econpres5_page_timing apppres7_page_timing frnpres7_page_timing immpres7_page_timing econpres7_page_timing mip_page_timing econnow_page_timing finworry_page_timing confecon_page_timing improve1_page_timing national1_page_timing national2_page_timing conspire1_page_timing conspire2_page_timing conspire3_page_timing taxecon_page_timing billtax_page_timing trade1_page_timing trade2_page_timing trade3_page_timing trade4_page_timing richpoor2_page_timing guarinc_page_timing lc_grid_page_timing pop_grid_page_timing corrupt_page_timing immignum_page_timing refugees_page_timing dreamer_page_timing wall_page_timing wall7_page_timing path_grid_page_timing threat_grid_page_timing hlthcare1_page_timing hlthcare2_page_timing abortion1_page_timing abortion2_page_timing freecol_page_timing loans_page_timing diversity5_page_timing diversity7_page_timing language_page_timing buyback_page_timing gw_grid_page_timing knowopioid1_page_timing knowopioid2_page_timing opioiddo_page_timing sentence_page_timing prek_page_timing demo4_page_timing experts_page_timing science_page_timing exphelp_page_timing elite1_page_timing elite2_page_timing elite3_page_timing elite4_page_timing ukraine1_page_timing ukraine2_page_timing excessive_page_timing rural1alt1_page_timing rural1alt2_page_timing rural2alt1_page_timing rural2alt2_page_timing rural3alt1_page_timing rural3alt2_page_timing rural4alt1_page_timing rural4alt2_page_timing unemp_page_timing interfere_page_timing autism1_page_timing autism2_page_timing gmo1_page_timing gmo2_page_timing warm_page_timing illegal_page_timing impeach1_page_timing impeach2_page_timing pk2_intro_page_timing pk_cjus_page_timing pk_germ_page_timing pk_sen_page_timing pk_spend_page_timing pk_geer_page_timing cheat_page_timing pid1d_page_timing pid1r_page_timing pidstr_page_timing pidlean_page_timing ngun_page_timing shooting_page_timing dem_activduty_page_timing milyears_page_timing milyr_page_timing combat_page_timing harass1a_page_timing harass1b_page_timing rr_grid_page_timing health1a_page_timing health1b_page_timing hospital_page_timing tall_page_timing nweight_page_timing disable_grid_page_timing smoker1_page_timing smoker2_page_timing exercise_page_timing relig1a_page_timing relig2a_page_timing att1_page_timing att2_page_timing att3_page_timing relig1b_page_timing relig2b_page_timing relig3b_page_timing attother_page_timing exp1_grid_page_timing exp2_grid_page_timing rexp1_grid_page_timing rexp2_grid_page_timing cexp1_grid_page_timing cexp2_grid_page_timing socmed_page_timing facebook1_page_timing facebook2_page_timing facebook3_page_timing twitter1_page_timing twitter2_page_timing twitter3_page_timing instagram1_page_timing instagram2_page_timing instagram3_page_timing reddit1_page_timing reddit2_page_timing reddit3_page_timing youtube1_page_timing youtube2_page_timing youtube3_page_timing snapchat1_page_timing snapchat2_page_timing snapchat3_page_timing tiktok1_page_timing tiktok2_page_timing tiktok3_page_timing raceid_page_timing racework_page_timing whitejob_page_timing voterid1_page_timing voterid2_page_timing serious_page_timing photo1_page_timing photo2_page_timing photo3_page_timing photo4_page_timing reinterview_page_timing ord_fttrump ord_ftobama ord_ftbiden ord_ftwarren ord_ftsanders ord_ftbuttigieg ord_ftharris ord_ftblack ord_ftwhite ord_fthisp ord_ftasian ord_ftmuslim ord_ftillegal ord_ftimmig1 ord_ftimmig2 ord_ftjournal ord_ftnato ord_ftun ord_ftice ord_ftnra ord_ftchina ord_ftnkorea ord_ftmexico ord_ftsaudi ord_ftukraine ord_ftiran ord_ftbritain ord_ftgermany ord_ftjapan ord_ftisrael ord_ftfrance ord_ftcanada ord_ftturkey ord_ftrussia ord_ftpales ord_electable_1 ord_electable_2 ord_conspire1 ord_conspire2 ord_conspire3 ord_lcself ord_lcd ord_lcr ord_pathway ord_preturn ord_popen ord_release1 ord_release2 ord_famsep ord_tchina ord_trussia ord_tiran ord_tmexico ord_tjapan ord_gw1 ord_gw2 ord_elite1 ord_elite2 ord_elite3 ord_elite4 ord_disable1 ord_disable2 ord_disable3 ord_disable4 ord_disable5 ord_disable6 ord_exptravel_ever ord_exphomesch ord_expfarm ord_expffood ord_expconvert ord_expholiday ord_explie ord_expshark ord_expdivorce ord_exparrest ord_expoverdose ord_expdefault ord_exppubasst ord_exphybrid ord_expmistake ord_explightning ord_exptravel_year ord_expindian ord_exphunt ord_expflag ord_exppublib ord_explottery ord_expshoponline ord_exppubtrans ord_expfight ord_expavoid ord_expknowimmig ord_expknowtrans ord_expbuyusa ord_expretire ord_expcolldebt ord_expknowpris ord_lc_reverse ord_att2_reverse starttime endtime duration pop_density_public flag_state
0 ANES 2019 Pilot Study version 20200204 1 1.34719693063187 1.10160293017768 1 2 2 -1 3 4 1 __NA__ -1 1 1 -1 -1 -1 3 2 -1 2 2 2 2 2 2 2 2 1 47 90 52 52 49 997 50 99 99 99 100 88 79 97 -1 99 82 71 86 88 90 66 89 88 81 77 98 94 89 88 99 99 92 89 86 1 1 -1 1 2 3 4 1 2 2 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 3 5 6 2 Health Care 3 2 2 3 2 4 4 3 2 4 2 1 2 2 2 1 2 2 3 6 2 1 4 3 5 3 1 2 -1 1 -1 6 4 4 4 4 2 5 2 2 4 1 1 -1 -1 3 6 2 3 -1 2 1 -1 1 1 1 5 2 -1 1 2 4 3 4 3 4 1 3 4 1 -1 2 -1 6 -1 4 -1 4 -1 2 2 2 1 2 1 -1 1 2 -1 5 1 2 2 2 2 supreme court 0.5 chancellor of germany 1 6 1 1896 1 2 -1 __NA__ 1 __NA__ 2 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 2 5 3 2 -1 3 -1 5 7.0 167 26.1530407663177 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 -3, restricted access -1 1 4 -1 -1 -3, restricted access -1 -1 -3, restricted access 2 1 2 1 2 1 1 1 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2 1 1 -1 -1 -1 -1 -1 1 2 1 -1 -1 -1 1 2 2 2 1 1 2 2 2 __NA__ 4 4 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 4 5 4 5 5 -1 -1 -1 4 4 2 3 3 1 -1 4 -1 -1 -1 -1 1 1969 1 2 6 1 3 1 __NA__ 9 1 4 2 3 1 __NA__ 1 2 4 2 1 __NA__ 3 -3, restricted access 48 -3 -3, restricted acces 3 952 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16.589 9.859 0.0 10.154 4.701 14.499 0.0 5.820 20.567 0.0 0.0 9.181 8.710 21.348 18.756 8.893 10.590 8.145 6.211 5.852 13.662 8.236 4.700 2.560 3.830 8.659 1.679 3.532 0.0 5.137 3.904 3.249 5.800 7.497 10.249 4.214 5.650 3.823 3.182 2.453 4.631 4.221 3.878 3.864 13.908 2.109 2.791 4.533 4.073 7.851 2.061 0.000 1.581 10.187 10.604 10.280 7.675 11.450 9.791 0.0 0.0 0.0 7.406 0.0 0.0 0.0 0.0 11.550 12.644 9.552 4.790 24.282 9.484 7.464 7.862 8.550 8.196 12.529 10.322 26.776 16.807 12.225 13.644 6.283 7.447 9.175 7.214 16.818 13.215 26.492 23.471 23.151 14.269 8.762 25.964 0.0 8.449 81.175 27.595 0.0 0.0 10.938 15.648 23.579 8.986 0.0 10.292 10.475 0.0 18.166 9.738 9.304 7.880 0.0 9.317 11.263 10.350 8.196 8.431 9.988 7.999 7.395 7.857 21.232 7.656 0.0 9.238 0.0 17.678 0.0 9.944 0.0 11.431 0.0 16.626 15.182 13.521 0.0 22.262 0.0 16.507 15.448 13.736 9.093 0.0 148.197 43.565 19.686 13.172 63.358 4.055 0.000 4.712 3.661 0.0 0.0 0.0 6.431 0.0 0.0 0.0 6.640 0.0 5.461 0.000 12.976 0.0 11.782 11.122 0.0 0.0 0.0 0.0 27.980 0.0 10.877 11.099 0.000 0.0 0.0 0.0 11.208 42.442 0.0 20.666 0.0 15.841 0.0 12.346 6.977 7.873 6.404 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.989 5.937 3.575 6.285 8.925 4.66 0.0 0.0 0.0 7.330 8.978 7.691 6.749 0.0 11.122 0.0 0.0 0.0 0.0 8.620 1 2 3 5 7 6 4 8 11 12 10 9 14 0 15 19 18 17 16 27 22 23 25 24 33 32 20 21 30 26 34 31 29 28 1 2 1 3 2 1 3 2 1 2 3 4 5 6 1 2 5 4 3 2 1 3 1 4 2 1 7 4 8 5 6 2 3 1 5 2 4 3 1 3 2 0 1 12/31/2019 18:57:33 12/31/2019 19:39:49 2536 1520 0
1 ANES 2019 Pilot Study version 20200204 2 .780822076219216 .638478211724453 1 1 1 -1 3 3 2 __NA__ -1 2 1 -1 -1 -1 1 1 -1 2 2 2 2 2 2 2 2 1 41 30 41 17 31 30 29 91 96 92 93 93 25 94 -1 67 86 78 91 93 44 19 93 25 82 22 89 91 94 71 66 100 20 25 77 2 -1 2 -1 1 1 1 2 3 2 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 5 3 2 1 Working together 1 2 2 3 2 4 2 5 3 2 5 2 2 2 2 4 6 6 1 7 2 2 4 3 2 3 1 2 -1 1 -1 2 2 2 2 4 4 4 5 4 3 1 1 -1 -1 3 1 5 6 -1 1 1 -1 1 1 2 -1 2 -1 3 2 4 4 4 3 3 1 2 1 1 -1 2 -1 5 -1 4 -1 4 -1 5 2 4 1 5 2 -1 2 1 -1 5 1 4 2 7 7 chief justice supremer court 1.0 germany chanceller 1 6 4 -7 2 6 2 __NA__ -1 __NA__ 2 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 2 2 4 2 3 -1 -1 5 10.0 235 33.715306122449 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -3, restricted access -1 1 1 1 -1 -3, restricted access -1 -1 -3, restricted access 1 1 2 2 2 2 1 1 2 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1 2 1 -1 -1 -1 1 2 2 2 1 2 2 2 2 __NA__ 4 2 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 5 5 -1 -1 -1 -1 -1 -1 2 4 2 1 1 1 -1 5 -1 -1 -1 -1 1 1942 1 6 1 2 1 5 __NA__ 10 1 4 6 1 2 __NA__ 2 1 2 2 2 __NA__ -7 -3, restricted access 1 -3 -3, restricted acces 3 1851 102 8 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.260 4.491 0.0 4.347 4.402 7.792 0.0 7.883 9.701 0.0 0.0 4.269 4.675 13.778 12.653 4.982 3.735 3.534 2.999 4.752 3.720 5.888 3.343 3.709 3.461 3.497 2.850 2.800 0.0 4.368 3.392 4.289 5.103 3.714 3.830 3.684 3.034 3.203 4.249 3.204 4.261 2.965 3.921 3.944 3.005 3.957 2.563 2.851 5.058 10.103 0.000 16.162 0.000 5.488 2.545 4.166 3.917 7.401 15.224 0.0 0.0 0.0 9.504 0.0 0.0 0.0 0.0 8.313 9.936 18.458 2.612 17.717 14.047 12.074 8.786 16.296 8.308 14.036 10.536 11.471 41.226 17.611 12.546 15.419 9.987 11.953 9.101 47.424 23.917 23.035 22.959 19.200 14.184 17.988 28.093 0.0 9.900 59.269 31.066 0.0 0.0 9.629 8.167 26.090 5.929 0.0 12.640 8.760 0.0 19.786 12.204 0.000 11.883 0.0 9.104 20.069 13.238 9.484 8.421 7.949 10.471 9.505 12.731 9.809 10.753 0.0 10.894 0.0 17.091 0.0 14.769 0.0 22.217 0.0 16.001 10.516 6.040 0.0 10.127 0.0 7.370 12.535 12.185 13.065 0.0 41.833 19.554 12.117 18.485 21.098 16.150 6.339 0.000 2.188 0.0 0.0 0.0 4.077 0.0 0.0 0.0 8.858 0.0 48.761 4.232 0.000 0.0 8.812 7.203 0.0 0.0 0.0 0.0 2.755 0.0 14.926 12.028 7.928 0.0 0.0 0.0 8.769 27.447 0.0 16.748 0.0 35.828 0.0 7.674 7.823 9.306 6.101 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.035 9.364 8.051 0.000 0.000 0.00 0.0 0.0 0.0 8.698 13.225 14.061 5.518 0.0 14.695 0.0 0.0 0.0 0.0 7.927 1 2 3 6 5 4 7 8 9 10 12 11 14 0 15 17 16 18 19 21 27 24 28 22 32 34 23 20 31 30 26 33 29 25 2 3 1 1 3 2 3 2 1 4 5 6 1 3 2 5 4 1 2 3 1 2 4 8 5 7 4 3 1 6 2 5 2 1 4 3 1 2 3 0 1 12/21/2019 4:19:56 12/21/2019 4:53:19 2003 1800 0
2 ANES 2019 Pilot Study version 20200204 3 .966366930694957 .790198239229266 1 1 1 -1 1 4 1 __NA__ -1 4 1 -1 -1 -1 2 1 -1 1 2 2 2 2 1 2 1 2 0 91 88 15 60 70 68 48 49 49 49 50 39 69 -1 63 66 51 40 2 2 2 1 3 59 1 50 1 1 1 51 87 50 1 3 1 1 -1 1 2 3 2 1 2 2 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 7 7 7 7 health care 4 5 5 7 1 1 5 4 1 7 1 1 3 3 1 1 4 4 4 7 2 2 5 5 4 4 2 2 -1 2 -1 7 3 1 5 5 5 5 5 5 5 5 5 -1 -1 3 7 6 7 -1 1 5 -1 1 1 2 -1 1 -1 1 6 3 3 5 5 1 1 5 5 1 -1 2 -1 4 -1 4 -1 4 -1 2 2 5 1 1 2 -1 3 1 -1 5 1 5 2 1 1 don't know 0.0 don't know 0 4 4 1960 2 1 1 __NA__ -1 __NA__ 1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 1 5 4 1 2 -1 -1 5 4.0 160 27.4609375 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -3, restricted access -1 1 1 1 -1 -3, restricted access -1 -1 -3, restricted access 1 2 2 2 2 2 1 1 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2 2 1 -1 -1 -1 -1 -1 1 2 1 -1 -1 -1 1 2 2 2 2 2 2 2 2 __NA__ 1 1 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 5 3 1 1 1 -1 5 -1 -1 -1 -1 1 1954 2 2 1 2 1 1 __NA__ 8 1 3 1 2 1 __NA__ 2 1 2 2 2 __NA__ -7 -3, restricted access 37 -3 -3, restricted acces 3 1576 249 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10.393 4.406 0.0 5.095 5.183 9.068 0.0 7.562 20.654 0.0 0.0 3.642 8.004 52.884 14.342 8.833 5.336 6.344 9.386 7.735 7.817 4.727 4.530 6.723 4.873 6.401 11.542 7.602 0.0 5.969 6.955 10.404 20.956 9.733 4.223 5.717 5.417 6.487 9.220 3.874 13.394 4.204 8.374 4.453 5.695 4.635 4.992 6.135 5.758 5.716 6.970 0.000 33.173 7.789 12.756 9.381 10.139 5.447 19.189 0.0 0.0 0.0 10.866 0.0 0.0 0.0 0.0 8.407 5.273 4.474 4.124 19.337 17.748 6.833 5.940 30.722 20.596 13.606 12.951 9.781 37.086 11.142 11.334 15.668 17.238 25.370 13.978 10.143 72.549 15.953 34.345 15.078 21.909 18.511 29.479 0.0 8.484 88.518 19.246 0.0 0.0 28.604 9.095 26.145 11.639 0.0 24.933 12.824 0.0 22.079 24.131 0.000 7.846 0.0 15.807 24.690 36.809 17.871 14.538 9.213 21.222 6.331 6.392 7.599 8.802 0.0 26.009 0.0 11.535 0.0 9.976 0.0 12.721 0.0 28.735 8.838 12.885 0.0 15.169 0.0 11.453 17.480 12.401 8.518 0.0 24.951 14.769 21.653 19.182 19.827 6.654 0.000 0.000 0.000 0.0 0.0 0.0 7.439 0.0 0.0 0.0 12.501 0.0 47.529 7.273 0.000 0.0 5.697 5.141 0.0 0.0 0.0 0.0 3.550 0.0 9.917 3.977 6.014 0.0 0.0 0.0 4.070 30.007 0.0 18.690 0.0 20.602 0.0 4.427 4.098 7.478 5.348 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.000 0.000 0.000 0.000 0.00 0.0 0.0 0.0 20.608 39.129 16.251 7.152 0.0 10.665 0.0 0.0 0.0 0.0 9.366 1 2 4 6 5 3 7 10 12 8 9 11 14 0 15 17 16 19 18 27 30 23 22 25 32 20 34 29 26 21 24 33 31 28 1 2 2 3 1 1 2 3 2 3 1 4 5 6 4 5 1 3 2 1 2 2 1 4 3 4 5 6 3 2 8 7 1 2 5 1 3 4 3 2 1 0 0 12/22/2019 23:03:28 12/22/2019 23:41:43 2295 70 0

To see the last several rows, use the .tail(m) method where m is the number of rows from the bottom. The last three rows are:

anes.tail(3)
version caseid weight weight_spss form follow reg1a reg1b liveurban youthurban placeid1a placeid1a_t placeid1b placeidimport turnout16a turnout16a1 turnout16b turnout16c vote16 turnout18a turnout18a1 particip_1 particip_2 particip_3 particip_4 particip_5 particip_6 particip_7 particip_8 particip_9 fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales vote20dem vote20cand vote20cand2 electable vote20jb vote20ew vote20bs cvote2020 tsplit1 contact1a contact1b contact2a contact2b contact3 contact4m_1 contact4m_2 contact4m_3 apppres5 frnpres5 immpres5 econpres5 apppres7 frnpres7 immpres7 econpres7 mip econnow finworry confecon improve1 national1 national2 conspire1 conspire2 conspire3 taxecon billtax trade1 trade2 trade3 trade4 richpoor2 guarinc lcself lcd lcr pop1 pop2 pop3 corrupt immignum refugees dreamstr dreamer dreamstr1 dreamstr2 wall5 wall7 pathway preturn popen release1 release2 famsep tchina trussia tiran tmexico tjapan hlthcare1 hlthcare2 abortion1 abortion2 freecol loans diversity5 diversity7 language buyback gw1 gw2 knowopioid1 knowopioid2 opioiddo sentence prek demo4 experts science exphelp elite1 elite2 elite3 elite4 ukraine1 ukraine2 excessive rural1alt1 rural1alt2 rural2alt1 rural2alt2 rural3alt1 rural3alt2 rural4alt1 rural4alt2 conf_unemp unemp conf_interfere interfere conf_autism autism1 autism2 conf_gmo gmo1 gmo2 conf_warm warm conf_illegal illegal impeach1 impeach2 pk_cjus pk_cjus_correct pk_germ pk_germ_correct pk_sen pk_spend pk_geer cheat pid7x pid1d pid2d pid1r pid2r pidstr pidlean ngun shooting dem_activduty milyears milyr1 milyr2 milyr3 milyr4 milyr5 milyr6 combat harass1a harass1b rr1 rr2 rr3 rr4 health1a health1b hospital feet inches nweight bmi disable1 disable2 disable3 disable4 disable5 disable6 smoker1 smoker2 exercise relig1a relig1a_txt relig2a att1 att2 att3 relig1b relig1b_t relig2b relig3b relig3b_t attother exptravel_ever exphomesch expfarm expffood expconvert expholiday explie expshark expdivorce exparrest expoverdose expdefault exppubasst exphybrid expmistake explightning exptravel_year expindian exphunt expflag exppublib explottery expshoponline exppubtrans expfight expavoid expknowimmig expknowtrans expbuyusa expretire expcolldebt expknowpris socmed_1 socmed_2 socmed_3 socmed_4 socmed_5 socmed_6 socmed_7 socmed_8 socmed_9 socmed_t facebook1 facebook2 facebook3 twitter1 twitter2 twitter3 instagram1 instagram2 instagram3 reddit1 reddit2 reddit3 youtube1 youtube2 youtube3 snapchat1 snapchat2 snapchat3 tiktok1 tiktok2 tiktok3 raceid racework whitejob race_sub1 race_sub2 voterid1 voterid2 serious photo1 photo2 photo3 photo4 reinterview birthyr gender educ marstat child18 race employ employ_t faminc_new votereg ideo5 pid7 newsint presvote16post presvote16post_t pew_bornagain pew_religimp pew_churatd pew_prayer religpew religpew_t religpew_protestant religpew_protestant_t inputstate zipCode FIPCounty region EnrollmentDate CompletedSurveys qualityControl_overall_scale tsmart_P2012 tsmart_G2012 tsmart_P2016 tsmart_G2016 tsmart_P2018 tsmart_G2018 abortion1_skp abortion2_skp apppres5_skp apppres7_skp att1_skp att2_skp att3_skp attother_skp autism1_skp autism2_skp billtax_skp buyback_skp cexp1_grid_skp cexp2_grid_skp cheat_skp combat_skp confecon_skp conspire1_skp conspire2_skp conspire3_skp contact1a_skp contact1b_skp contact2a_skp contact2b_skp contact3_skp corrupt_skp cvote2020_skp dem_activduty_skp demo4_skp disable_grid_skp diversity5_skp diversity7_skp dreamer_skp econnow_skp econpres5_skp econpres7_skp electable_skp elite1_skp elite2_skp elite3_skp elite4_skp excessive_skp exercise_skp exp1_grid_skp exp2_grid_skp experts_skp exphelp_skp facebook1_skp facebook2_skp facebook3_skp finworry_skp follow_skp freecol_skp frnpres5_skp frnpres7_skp ftasian_skp ftbiden_skp ftblack_skp ftbritain_skp ftbuttigieg_skp ftcanada_skp ftchina_skp ftfrance_skp ftgermany_skp ftharris_skp fthisp_skp ftice_skp ftillegal_skp ftimmig1_skp ftimmig2_skp ftiran_skp ftisrael_skp ftjapan_skp ftjournal_skp ftmexico_skp ftmuslim_skp ftnato_skp ftnkorea_skp ftnra_skp ftobama_skp ftpales_skp ftrussia_skp ftsanders_skp ftsaudi_skp fttrump_skp ftturkey_skp ftukraine_skp ftun_skp ftwarren_skp ftwhite_skp gmo1_skp gmo2_skp guarinc_skp gw_grid_skp harass1a_skp harass1b_skp health1a_skp health1b_skp hlthcare1_skp hlthcare2_skp hospital_skp illegal_skp immignum_skp immpres5_skp immpres7_skp impeach1_skp impeach2_skp improve1_skp instagram1_skp instagram2_skp instagram3_skp interfere_skp knowopioid1_skp knowopioid2_skp language_skp lc_grid_skp liveurban_skp loans_skp milyears_skp milyr_skp mip_skp national1_skp national2_skp ngun_skp opioiddo_skp particip_skp path_grid_skp pid1d_skp pid1r_skp pidlean_skp pidstr_skp pk_cjus_skp pk_geer_skp pk_germ_skp pk_sen_skp pk_spend_skp placeid1a_skp placeid1b_skp placeidimport_skp pop_grid_skp prek_skp raceid_skp racework_skp reddit1_skp reddit2_skp reddit3_skp refugees_skp reg1a_skp reg1b_skp reinterivew_skp relig1a_skp relig1b_skp relig2a_skp relig2b_skp relig3b_skp rexp1_grid_skp rexp2_grid_skp richpoor2_skp rr_grid_skp rural1alt1_skp rural1alt2_skp rural2alt1_skp rural2alt2_skp rural3alt1_skp rural4alt1_skp rural4alt2_skp science_skp sentence_skp serious_skp shooting_skp smoker1_skp smoker2_skp snapchat1_skp snapchat2_skp snapchat3_skp socmed_skp tall_skp taxecon_skp threat_grid_skp tiktok1_skp tiktok2_skp tiktok3_skp trade1_skp trade2_skp trade3_skp trade4_skp tsplit1_skp turnout16a_skp turnout16b_skp turnout16c_skp turnout18a_skp twitter1_skp twitter2_skp twitter3_skp ukraine1_skp ukraine2_skp unemp_skp vote16_skp vote20bs_skp vote20cand2_skp vote20cand_skp vote20dem_skp vote20ew_skp vote20jb_skp voterid1_skp voterid2_skp wall7_skp wall5_skp warm_skp nweight_skp whitejob_skp youthurban_skp youtube1_skp youtube2_skp youtube3_skp rural3alt2_skp follow_page_timing reg1a_page_timing reg1b_page_timing liveurban_page_timing youthurban_page_timing placeid1a_page_timing placeid1b_page_timing placeidimport_page_timing turnout16a_page_timing turnout16b_page_timing turnout16c_page_timing vote16_page_timing turnout18a_page_timing particip_page_timing fttrump_page_timing ftobama_page_timing ftbiden_page_timing ftwarren_page_timing ftsanders_page_timing ftbuttigieg_page_timing ftharris_page_timing ftblack_page_timing ftwhite_page_timing fthisp_page_timing ftasian_page_timing ftmuslim_page_timing ftillegal_page_timing ftimmig1_page_timing ftimmig2_page_timing ftjournal_page_timing ftnato_page_timing ftun_page_timing ftice_page_timing ftnra_page_timing ftchina_page_timing ftnkorea_page_timing ftmexico_page_timing ftsaudi_page_timing ftukraine_page_timing ftiran_page_timing ftbritain_page_timing ftgermany_page_timing ftjapan_page_timing ftisrael_page_timing ftfrance_page_timing ftcanada_page_timing ftturkey_page_timing ftrussia_page_timing ftpales_page_timing vote20dem_page_timing vote20cand_page_timing vote20cand2_page_timing electable_page_timing vote20jb_page_timing vote20ew_page_timing vote20bs_page_timing cvote2020_page_timing tsplit1_page_timing contact1a_page_timing contact1b_page_timing contact2a_page_timing contact2b_page_timing contact3_page_timing apppres5_page_timing frnpres5_page_timing immpres5_page_timing econpres5_page_timing apppres7_page_timing frnpres7_page_timing immpres7_page_timing econpres7_page_timing mip_page_timing econnow_page_timing finworry_page_timing confecon_page_timing improve1_page_timing national1_page_timing national2_page_timing conspire1_page_timing conspire2_page_timing conspire3_page_timing taxecon_page_timing billtax_page_timing trade1_page_timing trade2_page_timing trade3_page_timing trade4_page_timing richpoor2_page_timing guarinc_page_timing lc_grid_page_timing pop_grid_page_timing corrupt_page_timing immignum_page_timing refugees_page_timing dreamer_page_timing wall_page_timing wall7_page_timing path_grid_page_timing threat_grid_page_timing hlthcare1_page_timing hlthcare2_page_timing abortion1_page_timing abortion2_page_timing freecol_page_timing loans_page_timing diversity5_page_timing diversity7_page_timing language_page_timing buyback_page_timing gw_grid_page_timing knowopioid1_page_timing knowopioid2_page_timing opioiddo_page_timing sentence_page_timing prek_page_timing demo4_page_timing experts_page_timing science_page_timing exphelp_page_timing elite1_page_timing elite2_page_timing elite3_page_timing elite4_page_timing ukraine1_page_timing ukraine2_page_timing excessive_page_timing rural1alt1_page_timing rural1alt2_page_timing rural2alt1_page_timing rural2alt2_page_timing rural3alt1_page_timing rural3alt2_page_timing rural4alt1_page_timing rural4alt2_page_timing unemp_page_timing interfere_page_timing autism1_page_timing autism2_page_timing gmo1_page_timing gmo2_page_timing warm_page_timing illegal_page_timing impeach1_page_timing impeach2_page_timing pk2_intro_page_timing pk_cjus_page_timing pk_germ_page_timing pk_sen_page_timing pk_spend_page_timing pk_geer_page_timing cheat_page_timing pid1d_page_timing pid1r_page_timing pidstr_page_timing pidlean_page_timing ngun_page_timing shooting_page_timing dem_activduty_page_timing milyears_page_timing milyr_page_timing combat_page_timing harass1a_page_timing harass1b_page_timing rr_grid_page_timing health1a_page_timing health1b_page_timing hospital_page_timing tall_page_timing nweight_page_timing disable_grid_page_timing smoker1_page_timing smoker2_page_timing exercise_page_timing relig1a_page_timing relig2a_page_timing att1_page_timing att2_page_timing att3_page_timing relig1b_page_timing relig2b_page_timing relig3b_page_timing attother_page_timing exp1_grid_page_timing exp2_grid_page_timing rexp1_grid_page_timing rexp2_grid_page_timing cexp1_grid_page_timing cexp2_grid_page_timing socmed_page_timing facebook1_page_timing facebook2_page_timing facebook3_page_timing twitter1_page_timing twitter2_page_timing twitter3_page_timing instagram1_page_timing instagram2_page_timing instagram3_page_timing reddit1_page_timing reddit2_page_timing reddit3_page_timing youtube1_page_timing youtube2_page_timing youtube3_page_timing snapchat1_page_timing snapchat2_page_timing snapchat3_page_timing tiktok1_page_timing tiktok2_page_timing tiktok3_page_timing raceid_page_timing racework_page_timing whitejob_page_timing voterid1_page_timing voterid2_page_timing serious_page_timing photo1_page_timing photo2_page_timing photo3_page_timing photo4_page_timing reinterview_page_timing ord_fttrump ord_ftobama ord_ftbiden ord_ftwarren ord_ftsanders ord_ftbuttigieg ord_ftharris ord_ftblack ord_ftwhite ord_fthisp ord_ftasian ord_ftmuslim ord_ftillegal ord_ftimmig1 ord_ftimmig2 ord_ftjournal ord_ftnato ord_ftun ord_ftice ord_ftnra ord_ftchina ord_ftnkorea ord_ftmexico ord_ftsaudi ord_ftukraine ord_ftiran ord_ftbritain ord_ftgermany ord_ftjapan ord_ftisrael ord_ftfrance ord_ftcanada ord_ftturkey ord_ftrussia ord_ftpales ord_electable_1 ord_electable_2 ord_conspire1 ord_conspire2 ord_conspire3 ord_lcself ord_lcd ord_lcr ord_pathway ord_preturn ord_popen ord_release1 ord_release2 ord_famsep ord_tchina ord_trussia ord_tiran ord_tmexico ord_tjapan ord_gw1 ord_gw2 ord_elite1 ord_elite2 ord_elite3 ord_elite4 ord_disable1 ord_disable2 ord_disable3 ord_disable4 ord_disable5 ord_disable6 ord_exptravel_ever ord_exphomesch ord_expfarm ord_expffood ord_expconvert ord_expholiday ord_explie ord_expshark ord_expdivorce ord_exparrest ord_expoverdose ord_expdefault ord_exppubasst ord_exphybrid ord_expmistake ord_explightning ord_exptravel_year ord_expindian ord_exphunt ord_expflag ord_exppublib ord_explottery ord_expshoponline ord_exppubtrans ord_expfight ord_expavoid ord_expknowimmig ord_expknowtrans ord_expbuyusa ord_expretire ord_expcolldebt ord_expknowpris ord_lc_reverse ord_att2_reverse starttime endtime duration pop_density_public flag_state
3162 ANES 2019 Pilot Study version 20200204 3163 .892833236147303 .73006973719765 2 3 -1 3 4 1 -1 __NA__ 4 3 -1 -1 2 -1 -1 2 -1 2 2 2 2 2 2 2 2 1 6 31 50 2 59 0 31 88 100 100 100 60 100 -1 100 51 3 60 94 41 100 60 100 78 40 59 100 72 99 99 99 100 51 41 87 3 -1 -1 -1 4 4 4 4 4 -1 2 -1 -1 -1 -1 -1 -1 5 5 5 5 -1 -1 -1 -1 donald trump 2 5 4 6 1 5 5 1 1 1 7 5 4 2 2 1 7 7 4 4 5 5 5 1 7 7 1 2 -1 1 5 -1 5 5 5 5 1 5 -1 -1 -1 -1 -1 1 5 -1 -1 7 7 1 -1 1 7 5 5 2 -1 1 1 1 4 5 5 5 1 5 1 5 5 1 2 -1 1 -1 1 -1 1 -1 1 1 2 3 1 5 -1 2 5 -1 2 1 2 3 1 7 7 no 0.0 chancellor of europe 1 2 1 1444 2 4 -1 __NA__ -1 __NA__ -1 3 0 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 1 1 3 3 3 -1 1 7 5.0 175 15.5315 2 2 1 2 1 1 2 -1 2 -1 -3, restricted access -1 1 2 -1 3 -3, restricted access -1 -1 -3, restricted access -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 2 1 1 2 1 2 -1 -1 -1 -1 -1 2 2 1 2 2 -1 -1 -1 2 1 2 1 1 1 2 2 2 2 2 2 __NA__ 1 1 5 7 5 5 7 5 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 5 3 3 3 -1 2 5 -1 -1 -1 -1 1 1980 1 4 1 2 3 2 __NA__ 4 2 2 4 7 7 __NA__ 2 1 1 1 1 __NA__ 3 -3, restricted access 47 -3 -3, restricted acces 3 179 156 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.171 0.000 4.744 5.487 9.117 0.000 11.729 17.977 0.000 4.232 0.0 0.000 4.955 4.118 13.230 7.743 6.538 5.253 6.740 7.512 3.692 7.074 8.041 6.904 8.615 7.851 5.253 0.000 4.181 3.884 4.136 4.484 6.832 5.209 3.727 9.289 5.675 4.046 4.884 5.471 4.010 6.924 4.154 4.677 4.877 4.444 5.091 3.690 4.879 3.157 0.000 0.0 0.000 3.565 2.815 2.423 3.292 3.182 0.000 3.111 0.0 0.0 0.000 4.075 3.729 3.661 2.817 0.00 0.000 0.000 0.000 14.868 4.227 3.807 4.957 4.420 3.858 12.512 3.739 5.764 7.959 7.423 4.858 4.506 4.239 6.822 3.527 3.324 4.559 8.038 6.835 3.517 13.014 6.245 13.085 5.254 0.000 14.771 0.000 3.734 2.392 0.000 0.000 2.039 4.682 7.654 0.000 12.898 7.020 5.208 4.205 0.0 5.766 4.442 8.525 5.126 3.792 3.755 3.969 4.736 5.764 4.824 9.553 6.415 4.100 7.151 0.000 3.328 0.00 3.266 0.00 7.566 0.000 3.913 10.925 10.081 0.000 8.310 0.000 9.105 6.381 7.238 4.501 2.297 1.720 10.167 22.402 5.258 11.603 9.610 3.496 0.0 0.0 0.0 0.0 9.293 5.065 4.192 0.0 0.0 0.0 0.000 10.153 23.828 3.930 0.000 4.101 13.219 6.197 15.415 4.411 0.000 6.875 0.000 0.0 6.199 5.176 0.0 4.704 0.000 0.0 0.0 0.000 25.929 0.000 12.167 0.000 10.375 4.302 3.099 2.531 3.725 3.716 4.002 2.135 3.862 3.258 1.885 0.0 0.0 0.0 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0 4.102 5.759 11.928 0.00 5.281 15.987 0.0 0.0 0.0 0.0 5.334 1 2 6 4 5 3 7 10 12 8 9 11 0 14 15 16 19 17 18 26 23 28 27 31 34 30 24 25 20 21 32 29 33 22 1 2 3 1 3 2 2 1 3 4 5 6 2 1 2 3 4 1 4 6 3 5 1 2 7 3 4 5 1 8 2 6 3 2 5 4 1 3 1 2 0 1 12/31/2019 20:10:04 12/31/2019 20:29:15 1151 200 0
3163 ANES 2019 Pilot Study version 20200204 3164 1.58161278448241 1.29328477387127 2 1 -1 3 3 4 -1 __NA__ 2 4 -1 -1 2 -1 -1 2 -1 2 2 2 2 2 2 2 2 1 1 100 95 62 79 59 51 100 65 50 52 50 51 -1 49 91 84 72 59 0 54 0 62 0 60 0 73 55 50 1 56 89 0 0 1 1 1 -1 2 2 3 2 1 2 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 7 7 7 4 Donald Trump 3 4 3 5 1 3 4 5 5 6 2 1 4 3 4 3 2 2 2 4 1 1 4 5 4 3 2 2 -1 2 -1 7 2 3 2 4 2 4 -1 -1 -1 -1 -1 3 5 -1 -1 4 5 -1 4 5 1 1 3 2 -1 1 5 2 1 4 5 4 5 5 2 5 5 1 3 -1 3 -1 5 -1 5 -1 5 2 2 5 1 5 -1 2 5 -1 2 5 1 5 2 1 1 republican party 0.0 not sure 0 4 4 1970 2 2 -1 __NA__ 1 __NA__ 2 -1 0 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 1 3 3 2 3 -1 1 5 11.0 190 26.4967 2 2 2 2 2 2 1 1 3 -1 -3, restricted access -1 2 -1 -1 -1 -3, restricted access 2 -1 -3, restricted access -1 -1 -1 -1 -1 -1 -1 -1 -1 2 1 2 2 2 2 1 2 -1 -1 -1 -1 -1 1 2 2 2 2 -1 -1 -1 2 2 2 2 2 2 2 1 2 2 2 2 __NA__ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 4 5 -1 -1 -1 -1 -1 -1 5 5 1 2 2 -1 2 5 -1 -1 -1 -1 1 1960 1 1 1 2 2 4 __NA__ 1 2 2 2 1 7 __NA__ 2 2 6 7 11 __NA__ -7 -3, restricted access 6 -3 -3, restricted acces 4 1072 1117 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22.776 0.000 5.979 7.954 19.452 0.000 12.340 10.267 0.000 23.684 0.0 0.000 15.141 17.413 13.859 10.821 4.535 7.973 4.811 7.034 4.996 4.527 3.683 4.917 9.405 5.766 6.478 0.000 8.614 5.032 5.439 4.327 8.170 4.455 3.603 5.639 3.643 10.550 4.175 8.272 5.764 3.426 4.688 4.580 5.099 4.287 4.478 4.883 4.066 16.823 19.913 0.0 34.058 9.328 9.508 3.291 8.991 44.269 0.000 21.831 0.0 0.0 0.000 0.000 0.000 0.000 0.000 11.71 8.499 7.077 6.332 51.329 14.182 13.553 8.190 17.121 10.773 18.920 11.721 13.302 17.977 17.030 11.952 8.882 14.055 7.388 15.926 11.318 40.049 39.888 29.432 10.023 18.666 12.519 13.439 0.000 8.737 54.015 0.000 18.292 17.948 0.000 0.000 18.384 13.031 0.000 18.828 9.921 13.785 17.596 7.415 0.0 9.176 18.835 13.171 10.482 19.440 9.917 15.687 9.472 7.964 9.106 8.164 13.930 10.141 11.132 0.000 12.841 0.00 26.118 0.00 11.323 0.000 9.259 44.698 10.561 0.000 32.948 0.000 13.943 9.923 10.111 11.093 11.843 7.698 135.410 19.693 6.403 34.352 16.268 10.749 0.0 0.0 0.0 0.0 8.387 7.313 5.852 0.0 0.0 0.0 0.000 20.717 33.046 7.973 0.000 16.569 9.735 6.780 23.313 3.822 4.375 6.345 0.000 0.0 11.195 0.000 0.0 0.000 10.963 0.0 0.0 0.000 34.899 0.000 15.704 0.000 9.907 5.757 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 0.0 0.0 5.548 14.599 5.226 0.0 0.0 0.0 0.0 0.0 0.0 4.902 9.533 14.596 0.00 6.922 18.059 0.0 0.0 0.0 0.0 13.644 1 2 6 3 4 7 5 10 12 9 11 8 0 14 15 19 16 18 17 34 20 30 26 32 23 24 31 33 29 22 25 21 28 27 1 2 2 3 1 1 3 2 2 3 1 4 5 6 2 1 1 3 2 4 2 5 6 3 1 4 1 4 2 6 7 3 5 8 4 1 2 3 5 2 1 3 0 0 12/31/2019 22:10:05 12/31/2019 22:52:37 2552 6600 0
3164 ANES 2019 Pilot Study version 20200204 3165 .809576969671362 .661991088100273 1 2 1 -1 2 4 2 __NA__ -1 1 1 -1 -1 -1 2 1 -1 2 2 2 2 2 2 2 2 1 0 100 70 51 100 100 39 100 0 100 100 99 100 100 -1 98 100 98 2 0 99 98 98 99 96 100 100 99 100 97 99 98 98 98 99 1 3 -1 2 2 2 2 1 2 2 -1 -1 -1 2 -1 -1 -1 5 5 5 5 -1 -1 -1 -1 trump 5 5 5 7 5 3 3 3 1 7 7 3 3 3 1 1 7 6 6 2 1 1 1 3 2 2 1 2 -1 1 5 -1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 3 4 7 7 5 -1 1 -1 1 1 2 -1 4 -1 4 4 3 3 3 5 5 5 5 5 2 -1 2 -1 7 -1 7 -1 7 -1 5 1 5 1 5 1 -1 5 1 -1 5 1 5 1 7 7 0.0 ///////////// 0 4 4 1950 2 1 -1 __NA__ 1 __NA__ 1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 5 5 1 5 -1 3 -1 6 0.0 310 42.039 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -3, restricted access -1 2 -1 -1 -1 -3, restricted access -1 -1 -3, restricted access -1 2 2 2 1 2 2 2 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 1 2 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 2 2 2 2 2 2 2 2 1 __NA__ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 5 1 5 5 1 -1 5 -1 -1 -1 -1 1 1960 1 2 1 2 5 1 __NA__ 5 1 3 1 2 1 __NA__ 2 1 6 2 2 __NA__ -7 -3, restricted access 15 -3 -3, restricted acces 4 716 455 9 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.733 6.713 0.000 10.621 7.110 18.052 0.000 12.675 21.724 0.000 0.0 2.929 8.263 19.129 12.883 12.828 7.378 12.400 7.377 5.027 6.363 4.359 12.839 8.849 6.745 6.412 3.484 6.198 0.000 6.742 6.963 8.125 7.621 6.460 5.808 4.202 3.431 3.106 13.730 5.581 5.026 5.597 7.950 3.580 3.297 6.614 10.652 3.413 3.623 3.663 14.878 0.0 20.579 7.179 4.245 2.677 3.247 4.174 16.213 0.000 0.0 0.0 21.869 9.980 8.292 3.435 3.672 0.00 0.000 0.000 0.000 15.404 13.541 8.883 15.064 12.369 7.302 19.684 15.286 14.684 30.504 19.788 6.883 23.589 7.179 3.066 25.757 8.636 9.898 26.573 28.218 6.090 44.205 20.003 11.859 23.348 0.000 18.054 21.005 0.000 0.000 9.468 15.818 18.156 7.710 7.826 0.000 10.682 0.000 18.799 11.448 0.0 11.778 0.000 20.925 4.175 23.073 13.272 12.735 7.339 17.971 16.864 20.221 9.399 3.971 0.000 18.039 0.000 8.35 0.000 8.39 0.000 3.772 0.000 24.187 9.203 8.986 0.000 5.161 0.000 4.762 7.808 11.134 5.327 0.000 1.740 9.498 17.707 13.880 21.359 6.560 0.0 0.0 0.0 0.0 0.000 0.000 6.391 0.0 0.0 0.0 14.481 0.000 1348.991 0.000 10.312 0.000 15.887 8.462 0.000 0.000 0.000 0.000 5.547 0.0 10.946 0.000 0.0 0.000 0.000 0.0 0.0 25.084 0.000 18.232 0.000 20.694 0.000 5.296 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 0.0 0.0 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0 9.516 5.433 15.367 6.79 0.000 12.530 0.0 0.0 0.0 0.0 11.353 1 2 3 4 5 6 7 11 8 12 9 10 14 0 15 19 18 17 16 22 34 28 21 26 24 29 32 33 31 30 20 23 27 25 2 1 3 2 1 1 2 3 3 2 1 4 5 6 4 2 1 3 5 2 1 4 3 1 2 8 3 1 4 2 7 5 6 3 4 2 5 1 2 1 3 0 1 12/31/2019 23:27:51 1/1/2020 0:21:59 3248 1 0

To see a random selection of rows, use the .sample(p, replace=False) method, where p is the sample size and replace=False indicates sampling without replacement. To take a sample with replacement (for bootstrapping, for example), write replace=True. Here are five randomly drawn rows from anes:

anes.sample(5, replace=False)
version caseid weight weight_spss form follow reg1a reg1b liveurban youthurban placeid1a placeid1a_t placeid1b placeidimport turnout16a turnout16a1 turnout16b turnout16c vote16 turnout18a turnout18a1 particip_1 particip_2 particip_3 particip_4 particip_5 particip_6 particip_7 particip_8 particip_9 fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales vote20dem vote20cand vote20cand2 electable vote20jb vote20ew vote20bs cvote2020 tsplit1 contact1a contact1b contact2a contact2b contact3 contact4m_1 contact4m_2 contact4m_3 apppres5 frnpres5 immpres5 econpres5 apppres7 frnpres7 immpres7 econpres7 mip econnow finworry confecon improve1 national1 national2 conspire1 conspire2 conspire3 taxecon billtax trade1 trade2 trade3 trade4 richpoor2 guarinc lcself lcd lcr pop1 pop2 pop3 corrupt immignum refugees dreamstr dreamer dreamstr1 dreamstr2 wall5 wall7 pathway preturn popen release1 release2 famsep tchina trussia tiran tmexico tjapan hlthcare1 hlthcare2 abortion1 abortion2 freecol loans diversity5 diversity7 language buyback gw1 gw2 knowopioid1 knowopioid2 opioiddo sentence prek demo4 experts science exphelp elite1 elite2 elite3 elite4 ukraine1 ukraine2 excessive rural1alt1 rural1alt2 rural2alt1 rural2alt2 rural3alt1 rural3alt2 rural4alt1 rural4alt2 conf_unemp unemp conf_interfere interfere conf_autism autism1 autism2 conf_gmo gmo1 gmo2 conf_warm warm conf_illegal illegal impeach1 impeach2 pk_cjus pk_cjus_correct pk_germ pk_germ_correct pk_sen pk_spend pk_geer cheat pid7x pid1d pid2d pid1r pid2r pidstr pidlean ngun shooting dem_activduty milyears milyr1 milyr2 milyr3 milyr4 milyr5 milyr6 combat harass1a harass1b rr1 rr2 rr3 rr4 health1a health1b hospital feet inches nweight bmi disable1 disable2 disable3 disable4 disable5 disable6 smoker1 smoker2 exercise relig1a relig1a_txt relig2a att1 att2 att3 relig1b relig1b_t relig2b relig3b relig3b_t attother exptravel_ever exphomesch expfarm expffood expconvert expholiday explie expshark expdivorce exparrest expoverdose expdefault exppubasst exphybrid expmistake explightning exptravel_year expindian exphunt expflag exppublib explottery expshoponline exppubtrans expfight expavoid expknowimmig expknowtrans expbuyusa expretire expcolldebt expknowpris socmed_1 socmed_2 socmed_3 socmed_4 socmed_5 socmed_6 socmed_7 socmed_8 socmed_9 socmed_t facebook1 facebook2 facebook3 twitter1 twitter2 twitter3 instagram1 instagram2 instagram3 reddit1 reddit2 reddit3 youtube1 youtube2 youtube3 snapchat1 snapchat2 snapchat3 tiktok1 tiktok2 tiktok3 raceid racework whitejob race_sub1 race_sub2 voterid1 voterid2 serious photo1 photo2 photo3 photo4 reinterview birthyr gender educ marstat child18 race employ employ_t faminc_new votereg ideo5 pid7 newsint presvote16post presvote16post_t pew_bornagain pew_religimp pew_churatd pew_prayer religpew religpew_t religpew_protestant religpew_protestant_t inputstate zipCode FIPCounty region EnrollmentDate CompletedSurveys qualityControl_overall_scale tsmart_P2012 tsmart_G2012 tsmart_P2016 tsmart_G2016 tsmart_P2018 tsmart_G2018 abortion1_skp abortion2_skp apppres5_skp apppres7_skp att1_skp att2_skp att3_skp attother_skp autism1_skp autism2_skp billtax_skp buyback_skp cexp1_grid_skp cexp2_grid_skp cheat_skp combat_skp confecon_skp conspire1_skp conspire2_skp conspire3_skp contact1a_skp contact1b_skp contact2a_skp contact2b_skp contact3_skp corrupt_skp cvote2020_skp dem_activduty_skp demo4_skp disable_grid_skp diversity5_skp diversity7_skp dreamer_skp econnow_skp econpres5_skp econpres7_skp electable_skp elite1_skp elite2_skp elite3_skp elite4_skp excessive_skp exercise_skp exp1_grid_skp exp2_grid_skp experts_skp exphelp_skp facebook1_skp facebook2_skp facebook3_skp finworry_skp follow_skp freecol_skp frnpres5_skp frnpres7_skp ftasian_skp ftbiden_skp ftblack_skp ftbritain_skp ftbuttigieg_skp ftcanada_skp ftchina_skp ftfrance_skp ftgermany_skp ftharris_skp fthisp_skp ftice_skp ftillegal_skp ftimmig1_skp ftimmig2_skp ftiran_skp ftisrael_skp ftjapan_skp ftjournal_skp ftmexico_skp ftmuslim_skp ftnato_skp ftnkorea_skp ftnra_skp ftobama_skp ftpales_skp ftrussia_skp ftsanders_skp ftsaudi_skp fttrump_skp ftturkey_skp ftukraine_skp ftun_skp ftwarren_skp ftwhite_skp gmo1_skp gmo2_skp guarinc_skp gw_grid_skp harass1a_skp harass1b_skp health1a_skp health1b_skp hlthcare1_skp hlthcare2_skp hospital_skp illegal_skp immignum_skp immpres5_skp immpres7_skp impeach1_skp impeach2_skp improve1_skp instagram1_skp instagram2_skp instagram3_skp interfere_skp knowopioid1_skp knowopioid2_skp language_skp lc_grid_skp liveurban_skp loans_skp milyears_skp milyr_skp mip_skp national1_skp national2_skp ngun_skp opioiddo_skp particip_skp path_grid_skp pid1d_skp pid1r_skp pidlean_skp pidstr_skp pk_cjus_skp pk_geer_skp pk_germ_skp pk_sen_skp pk_spend_skp placeid1a_skp placeid1b_skp placeidimport_skp pop_grid_skp prek_skp raceid_skp racework_skp reddit1_skp reddit2_skp reddit3_skp refugees_skp reg1a_skp reg1b_skp reinterivew_skp relig1a_skp relig1b_skp relig2a_skp relig2b_skp relig3b_skp rexp1_grid_skp rexp2_grid_skp richpoor2_skp rr_grid_skp rural1alt1_skp rural1alt2_skp rural2alt1_skp rural2alt2_skp rural3alt1_skp rural4alt1_skp rural4alt2_skp science_skp sentence_skp serious_skp shooting_skp smoker1_skp smoker2_skp snapchat1_skp snapchat2_skp snapchat3_skp socmed_skp tall_skp taxecon_skp threat_grid_skp tiktok1_skp tiktok2_skp tiktok3_skp trade1_skp trade2_skp trade3_skp trade4_skp tsplit1_skp turnout16a_skp turnout16b_skp turnout16c_skp turnout18a_skp twitter1_skp twitter2_skp twitter3_skp ukraine1_skp ukraine2_skp unemp_skp vote16_skp vote20bs_skp vote20cand2_skp vote20cand_skp vote20dem_skp vote20ew_skp vote20jb_skp voterid1_skp voterid2_skp wall7_skp wall5_skp warm_skp nweight_skp whitejob_skp youthurban_skp youtube1_skp youtube2_skp youtube3_skp rural3alt2_skp follow_page_timing reg1a_page_timing reg1b_page_timing liveurban_page_timing youthurban_page_timing placeid1a_page_timing placeid1b_page_timing placeidimport_page_timing turnout16a_page_timing turnout16b_page_timing turnout16c_page_timing vote16_page_timing turnout18a_page_timing particip_page_timing fttrump_page_timing ftobama_page_timing ftbiden_page_timing ftwarren_page_timing ftsanders_page_timing ftbuttigieg_page_timing ftharris_page_timing ftblack_page_timing ftwhite_page_timing fthisp_page_timing ftasian_page_timing ftmuslim_page_timing ftillegal_page_timing ftimmig1_page_timing ftimmig2_page_timing ftjournal_page_timing ftnato_page_timing ftun_page_timing ftice_page_timing ftnra_page_timing ftchina_page_timing ftnkorea_page_timing ftmexico_page_timing ftsaudi_page_timing ftukraine_page_timing ftiran_page_timing ftbritain_page_timing ftgermany_page_timing ftjapan_page_timing ftisrael_page_timing ftfrance_page_timing ftcanada_page_timing ftturkey_page_timing ftrussia_page_timing ftpales_page_timing vote20dem_page_timing vote20cand_page_timing vote20cand2_page_timing electable_page_timing vote20jb_page_timing vote20ew_page_timing vote20bs_page_timing cvote2020_page_timing tsplit1_page_timing contact1a_page_timing contact1b_page_timing contact2a_page_timing contact2b_page_timing contact3_page_timing apppres5_page_timing frnpres5_page_timing immpres5_page_timing econpres5_page_timing apppres7_page_timing frnpres7_page_timing immpres7_page_timing econpres7_page_timing mip_page_timing econnow_page_timing finworry_page_timing confecon_page_timing improve1_page_timing national1_page_timing national2_page_timing conspire1_page_timing conspire2_page_timing conspire3_page_timing taxecon_page_timing billtax_page_timing trade1_page_timing trade2_page_timing trade3_page_timing trade4_page_timing richpoor2_page_timing guarinc_page_timing lc_grid_page_timing pop_grid_page_timing corrupt_page_timing immignum_page_timing refugees_page_timing dreamer_page_timing wall_page_timing wall7_page_timing path_grid_page_timing threat_grid_page_timing hlthcare1_page_timing hlthcare2_page_timing abortion1_page_timing abortion2_page_timing freecol_page_timing loans_page_timing diversity5_page_timing diversity7_page_timing language_page_timing buyback_page_timing gw_grid_page_timing knowopioid1_page_timing knowopioid2_page_timing opioiddo_page_timing sentence_page_timing prek_page_timing demo4_page_timing experts_page_timing science_page_timing exphelp_page_timing elite1_page_timing elite2_page_timing elite3_page_timing elite4_page_timing ukraine1_page_timing ukraine2_page_timing excessive_page_timing rural1alt1_page_timing rural1alt2_page_timing rural2alt1_page_timing rural2alt2_page_timing rural3alt1_page_timing rural3alt2_page_timing rural4alt1_page_timing rural4alt2_page_timing unemp_page_timing interfere_page_timing autism1_page_timing autism2_page_timing gmo1_page_timing gmo2_page_timing warm_page_timing illegal_page_timing impeach1_page_timing impeach2_page_timing pk2_intro_page_timing pk_cjus_page_timing pk_germ_page_timing pk_sen_page_timing pk_spend_page_timing pk_geer_page_timing cheat_page_timing pid1d_page_timing pid1r_page_timing pidstr_page_timing pidlean_page_timing ngun_page_timing shooting_page_timing dem_activduty_page_timing milyears_page_timing milyr_page_timing combat_page_timing harass1a_page_timing harass1b_page_timing rr_grid_page_timing health1a_page_timing health1b_page_timing hospital_page_timing tall_page_timing nweight_page_timing disable_grid_page_timing smoker1_page_timing smoker2_page_timing exercise_page_timing relig1a_page_timing relig2a_page_timing att1_page_timing att2_page_timing att3_page_timing relig1b_page_timing relig2b_page_timing relig3b_page_timing attother_page_timing exp1_grid_page_timing exp2_grid_page_timing rexp1_grid_page_timing rexp2_grid_page_timing cexp1_grid_page_timing cexp2_grid_page_timing socmed_page_timing facebook1_page_timing facebook2_page_timing facebook3_page_timing twitter1_page_timing twitter2_page_timing twitter3_page_timing instagram1_page_timing instagram2_page_timing instagram3_page_timing reddit1_page_timing reddit2_page_timing reddit3_page_timing youtube1_page_timing youtube2_page_timing youtube3_page_timing snapchat1_page_timing snapchat2_page_timing snapchat3_page_timing tiktok1_page_timing tiktok2_page_timing tiktok3_page_timing raceid_page_timing racework_page_timing whitejob_page_timing voterid1_page_timing voterid2_page_timing serious_page_timing photo1_page_timing photo2_page_timing photo3_page_timing photo4_page_timing reinterview_page_timing ord_fttrump ord_ftobama ord_ftbiden ord_ftwarren ord_ftsanders ord_ftbuttigieg ord_ftharris ord_ftblack ord_ftwhite ord_fthisp ord_ftasian ord_ftmuslim ord_ftillegal ord_ftimmig1 ord_ftimmig2 ord_ftjournal ord_ftnato ord_ftun ord_ftice ord_ftnra ord_ftchina ord_ftnkorea ord_ftmexico ord_ftsaudi ord_ftukraine ord_ftiran ord_ftbritain ord_ftgermany ord_ftjapan ord_ftisrael ord_ftfrance ord_ftcanada ord_ftturkey ord_ftrussia ord_ftpales ord_electable_1 ord_electable_2 ord_conspire1 ord_conspire2 ord_conspire3 ord_lcself ord_lcd ord_lcr ord_pathway ord_preturn ord_popen ord_release1 ord_release2 ord_famsep ord_tchina ord_trussia ord_tiran ord_tmexico ord_tjapan ord_gw1 ord_gw2 ord_elite1 ord_elite2 ord_elite3 ord_elite4 ord_disable1 ord_disable2 ord_disable3 ord_disable4 ord_disable5 ord_disable6 ord_exptravel_ever ord_exphomesch ord_expfarm ord_expffood ord_expconvert ord_expholiday ord_explie ord_expshark ord_expdivorce ord_exparrest ord_expoverdose ord_expdefault ord_exppubasst ord_exphybrid ord_expmistake ord_explightning ord_exptravel_year ord_expindian ord_exphunt ord_expflag ord_exppublib ord_explottery ord_expshoponline ord_exppubtrans ord_expfight ord_expavoid ord_expknowimmig ord_expknowtrans ord_expbuyusa ord_expretire ord_expcolldebt ord_expknowpris ord_lc_reverse ord_att2_reverse starttime endtime duration pop_density_public flag_state
67 ANES 2019 Pilot Study version 20200204 68 .929783697332345 .760284129308659 1 1 1 -1 1 1 4 __NA__ -1 4 1 -1 -1 -1 1 1 -1 2 2 2 2 2 2 2 2 1 98 4 7 0 0 1 1 90 98 89 94 10 20 96 -1 11 50 17 77 100 43 12 15 43 24 9 73 38 75 100 61 82 19 22 66 2 -1 2 -1 1 1 1 2 3 2 -1 -1 -1 2 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 The way the democrats are dividing the country... 1 1 3 2 1 3 5 2 3 2 7 1 2 3 1 5 7 6 1 6 1 1 5 5 6 4 2 1 2 -1 1 -1 3 1 5 2 4 4 4 3 4 3 2 -1 -1 1 1 7 7 5 -1 5 -1 4 1 1 1 2 -1 7 2 2 2 3 2 3 1 3 2 2 -1 4 -1 4 -1 5 -1 4 -1 5 2 3 2 3 2 -1 4 1 -1 5 2 3 2 7 7 supreme court judge 0.5 none 0 6 4 1960 2 5 3 __NA__ -1 __NA__ -1 1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 1 3 4 3 -1 3 -1 5 3.0 115 20.3691106072058 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -3, restricted access -1 1 1 1 -1 -3, restricted access -1 -1 -3, restricted access 1 1 2 1 1 2 2 1 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2 2 2 -1 -1 -1 -1 -1 1 2 1 -1 -1 -1 2 2 2 2 2 2 2 1 2 internet -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 4 3 1 1 1 -1 4 3 3 2 1 1 1939 2 2 1 2 1 5 __NA__ 97 1 4 5 1 2 __NA__ 1 1 2 1 1 __NA__ 3 -3, restricted access 18 -3 -3, restricted acces 2 1465 107 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12.605 8.561 0.000 4.676 6.086 8.623 0.000 6.783 13.154 0.0 0.000 5.859 8.943 22.593 13.085 6.119 4.728 5.953 4.762 4.915 4.268 6.341 6.195 8.563 5.304 5.709 4.892 7.929 0.000 4.738 4.315 3.870 7.847 4.711 5.231 3.433 4.471 4.100 3.030 3.804 4.352 4.421 4.910 5.988 3.732 5.127 3.462 3.176 7.250 13.088 0.000 10.181 0.000 8.010 7.790 6.176 7.504 18.578 12.275 0.000 0.0 0.0 8.962 7.102 7.993 6.607 5.440 0.000 0.000 0.000 0.000 157.504 20.323 7.883 7.132 10.428 8.030 11.614 9.143 19.182 12.333 14.244 14.694 7.818 10.659 8.603 10.045 14.982 15.821 20.262 18.713 8.648 11.748 9.797 22.721 14.641 0.000 59.721 21.400 0.000 0.000 8.785 15.041 13.196 10.385 9.419 0.000 9.518 0.000 23.314 10.642 11.350 10.034 0.000 16.009 9.661 10.949 9.864 13.077 8.927 7.401 9.461 7.076 8.240 7.476 0.000 9.272 0.000 8.648 0.000 11.764 0.000 9.422 0.000 13.480 13.033 10.491 0.000 12.082 0.000 9.893 16.968 12.699 14.246 0.000 36.350 19.847 11.796 14.944 26.245 8.036 7.71 0.00 0.0 5.925 0.000 0.000 8.265 0.0 0.0 0.0 12.022 0.000 40.868 0.000 7.345 0.000 12.139 8.783 0.000 0.000 0.000 0.000 6.009 0.000 19.316 7.016 6.071 0.000 0.000 0.00 12.014 32.912 0.000 23.145 0.000 17.793 0.000 23.788 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 0.0 0.0 8.760 9.573 6.610 5.050 0.000 14.295 11.154 11.232 14.603 8.415 13.064 1 2 3 5 6 4 7 11 9 8 12 10 14 0 15 17 16 19 18 20 25 23 22 32 30 29 27 28 34 31 24 21 26 33 3 1 2 1 2 3 3 1 2 4 5 6 4 2 3 5 1 1 2 1 4 2 3 7 8 6 4 5 3 1 2 3 5 4 1 2 3 2 1 0 0 12/21/2019 17:07:44 12/21/2019 17:42:29 2085 70 0
663 ANES 2019 Pilot Study version 20200204 664 1.00210010152631 .819417253018064 2 1 -1 1 4 4 -1 __NA__ 3 2 -1 -1 -1 1 1 1 -1 2 2 2 1 2 2 2 2 2 93 9 13 5 4 3 12 77 70 51 70 25 7 -1 70 38 51 38 72 70 57 41 29 21 50 28 70 62 60 70 60 60 51 41 42 2 -1 2 -1 1 1 1 5 3 -1 2 -1 -1 -1 -1 -1 -1 2 2 1 2 -1 -1 -1 -1 The divisiveness being led by the Democrats 1 1 1 2 1 3 3 2 3 1 6 2 2 2 2 5 7 7 1 6 4 2 4 4 5 5 1 1 1 -1 1 -1 4 2 5 2 4 3 -1 -1 -1 -1 -1 7 2 -1 -1 6 6 3 -1 2 7 3 3 1 1 3 4 4 2 3 2 2 2 2 2 2 3 2 2 -1 3 -1 5 -1 5 -1 5 4 2 3 2 4 -1 2 2 -1 1 3 2 3 1 7 7 chief justice us supreme court 1.0 german chancellor 1 6 3 1000 2 7 -1 __NA__ 2 __NA__ 1 -1 6 2 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 3 5 4 3 2 -1 2 5 8.0 285 43.3293685121107 2 2 2 2 2 2 2 -1 1 -1 -3, restricted access -1 1 1 1 1 -3, restricted access -1 -1 -3, restricted access -1 -1 -1 -1 -1 -1 -1 -1 -1 2 2 1 2 2 2 1 2 -1 -1 -1 -1 -1 2 1 2 2 1 -1 -1 -1 1 2 2 1 2 1 2 1 2 2 2 2 __NA__ 1 4 4 -1 -1 -1 3 4 5 -1 -1 -1 5 5 5 -1 -1 -1 -1 -1 -1 2 2 2 1 1 -1 1 5 -1 -1 -1 -1 2 1954 2 3 1 2 1 5 __NA__ 97 1 5 7 1 2 __NA__ 1 1 1 1 1 __NA__ 10 -3, restricted access 45 -3 -3, restricted acces 3 1600 65 5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10.575 0.000 3.943 5.080 5.256 0.000 8.086 7.508 0.000 0.0 12.626 4.227 9.367 25.599 11.180 7.155 10.986 3.892 7.709 3.036 9.219 12.620 13.901 17.284 10.959 13.165 4.969 0.000 5.072 5.953 7.669 5.590 10.398 8.173 4.119 8.830 4.507 8.311 5.106 6.248 4.399 5.938 4.015 5.927 4.001 7.234 4.500 5.501 11.055 7.024 0.000 7.076 0.000 6.410 3.201 3.034 8.745 10.334 0.000 10.342 0.0 0.0 0.000 7.916 7.655 4.827 3.789 0.000 0.000 0.000 0.000 93.275 9.801 12.050 4.766 10.754 7.442 12.423 75.957 7.313 19.533 12.353 11.694 8.132 8.404 12.716 6.249 13.565 15.216 25.858 46.299 7.933 24.508 12.597 21.479 4.266 0.000 127.041 0.000 51.281 9.120 0.000 0.000 17.544 7.115 60.696 0.000 11.166 13.541 26.676 10.324 7.117 10.681 23.546 15.486 20.892 10.092 10.674 19.447 4.115 7.083 6.467 6.931 6.770 9.389 7.662 0.000 34.422 0.000 10.148 0.000 12.281 0.000 6.939 14.188 8.670 0.000 8.154 0.000 64.669 11.075 12.863 8.662 11.917 8.820 20.142 10.619 11.990 21.414 12.633 4.604 0.00 0.00 0.0 0.000 14.504 9.606 5.555 0.0 0.0 0.0 0.000 11.338 99.253 3.440 0.000 5.324 9.485 8.825 26.068 2.612 0.000 5.602 0.000 0.000 7.959 2.967 4.716 3.254 0.000 0.00 0.000 0.000 30.114 0.000 20.753 0.000 12.525 9.278 4.799 5.514 5.240 0.000 0.000 0.000 5.097 9.285 10.413 0.000 0.000 0.000 6.452 5.424 3.429 0.000 0.000 0.000 0.0 0.0 0.0 10.101 8.297 7.479 0.000 4.745 10.159 0.000 0.000 0.000 0.000 5.665 1 2 3 5 7 6 4 10 11 9 12 8 0 14 15 17 19 16 18 29 32 22 20 23 30 28 24 26 31 25 33 34 21 27 1 3 2 1 2 3 2 3 1 4 5 6 2 1 4 2 3 1 3 5 4 2 6 1 8 7 1 4 5 2 6 3 4 5 1 2 3 2 3 1 0 0 12/21/2019 3:02:57 12/21/2019 3:41:11 2294 700 0
1807 ANES 2019 Pilot Study version 20200204 1808 1.9039498655159 1.55685980503235 2 1 -1 1 3 3 -1 __NA__ 2 4 -1 -1 -1 1 2 2 -1 2 2 2 2 1 1 2 1 2 40 46 40 60 65 45 30 65 60 60 75 65 60 -1 75 60 70 60 10 15 20 20 45 25 50 25 60 75 80 35 70 70 25 20 40 1 8 -1 1 1 2 2 1 3 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 5 6 3 Cost of living increasing at a rate faster tha... 2 2 2 3 2 4 4 3 3 3 3 2 4 1 2 2 3 3 3 7 3 2 4 3 5 3 2 2 -1 2 -1 6 1 3 4 5 4 5 -1 -1 -1 -1 -1 2 3 -1 -1 5 5 -1 2 1 3 2 2 2 -1 1 1 1 6 3 4 4 3 3 2 3 5 1 3 -1 3 -1 4 -1 4 -1 4 4 2 4 1 5 -1 2 2 -1 1 4 1 3 2 3 3 board member 0.0 chancellor 1 6 1 1980 2 2 -1 __NA__ 1 __NA__ 2 -1 1 2 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 5 2 2 4 4 -1 2 5 11.0 186 25.938901011704 2 2 2 2 2 2 2 -1 4 -1 -3, restricted access -1 2 -1 -1 -1 -3, restricted access 2 -1 -3, restricted access -1 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2 2 2 2 1 2 -1 -1 -1 -1 -1 2 1 1 2 1 -1 -1 -1 1 2 2 1 1 1 1 1 1 2 2 2 __NA__ 5 4 5 1 2 5 5 5 5 1 2 5 2 3 5 3 5 5 -1 -1 -1 3 3 3 3 3 -1 1 5 2 2 2 1 1 1995 1 5 5 2 3 1 __NA__ 8 1 3 2 1 1 __NA__ 2 4 6 7 11 __NA__ -7 -3, restricted access 24 -3 -3, restricted acces 3 666 21 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 17.862 0.000 2.532 2.447 3.598 0.000 8.000 5.905 0.000 0.0 9.003 2.828 21.783 17.034 8.345 8.621 3.805 6.521 5.645 3.505 4.597 4.031 8.369 3.430 4.040 3.916 4.467 0.000 2.520 2.975 4.381 6.075 5.744 5.110 2.961 9.189 5.423 4.553 4.439 3.033 6.742 4.339 2.354 5.153 3.564 3.557 4.188 4.967 4.700 4.086 10.521 0.000 13.584 27.039 4.418 1.242 5.575 20.167 0.000 17.044 0.0 0.0 0.000 0.000 0.000 0.000 0.000 7.302 3.075 5.578 2.979 48.065 6.153 5.462 3.362 13.932 4.167 7.396 5.586 34.032 15.292 8.026 6.999 29.071 8.544 10.065 4.478 35.276 15.546 43.561 19.886 7.566 17.165 18.270 30.201 0.000 8.953 86.339 0.000 35.766 13.557 0.000 0.000 17.655 8.190 0.000 15.471 7.292 7.685 10.952 5.588 0.000 26.345 19.742 9.879 15.825 7.609 5.424 10.693 2.323 4.178 5.244 3.312 15.754 8.948 3.795 0.000 20.216 0.000 18.101 0.000 3.733 0.000 9.238 21.077 9.497 0.000 9.023 0.000 13.497 7.498 9.300 4.721 6.797 10.567 23.992 15.487 9.984 21.284 11.008 8.935 0.00 3.39 2.1 0.000 3.731 3.206 5.544 0.0 0.0 0.0 0.000 5.337 33.968 4.899 0.000 5.017 4.242 4.828 25.389 3.181 0.000 3.381 0.000 0.000 4.845 0.000 0.000 0.000 3.909 0.00 0.000 0.000 23.766 0.000 10.310 0.000 10.473 5.912 4.587 4.119 3.609 2.577 1.564 2.944 3.540 5.446 1.157 11.605 6.447 3.249 14.591 3.848 1.437 4.341 2.536 1.879 0.0 0.0 0.0 2.592 4.759 6.874 0.000 6.128 10.347 4.343 5.241 4.402 2.303 4.595 1 2 4 3 7 5 6 10 8 9 11 12 0 14 15 17 16 18 19 32 27 33 24 28 31 22 34 23 25 30 26 29 20 21 1 2 3 2 1 1 3 2 1 2 3 4 5 6 1 2 4 1 3 2 5 3 4 6 1 2 5 2 1 6 3 4 8 7 3 4 2 5 1 1 2 3 0 1 12/22/2019 3:23:41 12/22/2019 3:56:16 1955 1700 0
1179 ANES 2019 Pilot Study version 20200204 1180 1.03170391458116 .843624290953015 2 1 -1 1 3 4 -1 __NA__ 4 1 -1 -1 -1 1 2 1 -1 2 1 2 1 1 1 1 1 2 0 100 84 79 59 79 86 91 68 93 84 94 65 -1 100 89 91 94 0 0 66 3 91 1 98 17 90 91 69 73 92 100 3 12 81 1 5 -1 2 2 2 2 1 2 -1 2 -1 -1 -1 -1 -1 -1 5 5 5 5 -1 -1 -1 -1 Donald Trump 5 5 4 7 4 5 4 4 3 7 1 3 5 1 4 1 1 1 2 7 1 1 4 4 3 1 1 2 -1 1 5 -1 1 4 1 5 2 5 -1 -1 -1 -1 -1 1 5 -1 -1 3 4 1 -1 1 1 1 2 1 1 1 1 2 7 3 5 5 5 5 1 5 5 1 4 -1 4 -1 1 -1 3 -1 4 5 2 5 1 5 -1 2 2 -1 2 5 1 5 2 1 1 supreme court 0.5 president of germany 1 6 1 2017 2 1 1 __NA__ -1 __NA__ 1 -1 0 5 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 5 1 1 5 -1 1 1 5 0.0 148 28.9011111111111 2 2 1 1 2 1 1 1 1 -1 -3, restricted access -1 2 -1 -1 -1 -3, restricted access 1 2 -3, restricted access -1 -1 -1 -1 -1 -1 -1 -1 -1 2 1 1 1 1 2 1 2 -1 -1 -1 -1 -1 1 1 2 2 2 -1 -1 -1 2 2 2 1 1 1 2 1 1 2 2 2 __NA__ 1 1 5 1 1 1 3 5 5 -1 -1 -1 4 5 5 2 5 5 -1 -1 -1 2 1 2 1 1 -1 1 5 2 5 1 2 1 1963 2 3 5 2 1 6 __NA__ 2 1 1 1 1 1 __NA__ 2 3 5 5 2 __NA__ -7 -3, restricted access 26 -3 -3, restricted acces 2 246 180 9 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12.663 0.000 3.283 5.844 5.179 0.000 11.159 4.454 0.000 0.0 16.330 3.013 11.565 18.756 17.642 14.286 4.856 2.908 3.527 3.505 3.511 5.499 6.019 4.087 4.629 5.340 5.644 0.000 4.914 3.547 7.482 3.310 4.461 5.008 4.030 4.777 3.143 4.891 3.693 3.630 3.332 3.237 3.736 3.196 3.015 3.206 3.169 4.423 4.809 9.257 11.589 0.000 7.762 5.583 3.237 2.977 4.247 3.295 0.000 6.854 0.0 0.0 0.000 8.870 4.642 2.633 2.617 0.000 0.000 0.000 0.000 17.371 8.997 5.191 4.445 7.504 6.043 10.847 12.979 7.074 16.876 10.038 6.419 6.497 9.217 7.414 6.822 5.700 12.585 19.849 14.666 6.654 10.214 7.887 14.017 5.195 0.000 42.204 0.000 10.312 5.994 0.000 0.000 9.965 9.984 6.782 0.000 7.051 9.088 14.188 12.163 14.158 5.748 21.570 12.802 7.844 7.827 5.198 7.225 3.286 5.672 3.764 8.894 6.533 5.962 7.621 0.000 8.332 0.000 8.508 0.000 13.972 0.000 8.600 12.624 7.428 0.000 10.564 0.000 11.722 10.496 7.223 8.163 7.076 9.030 25.343 20.133 11.591 14.067 12.623 5.172 0.00 0.00 0.0 0.000 7.931 5.124 4.510 0.0 0.0 0.0 0.000 6.616 35.591 0.000 4.727 8.790 9.799 6.757 29.264 4.057 3.634 3.125 0.000 0.000 8.839 0.000 0.000 0.000 6.680 3.05 0.000 0.000 26.732 0.000 27.923 0.000 8.634 8.412 3.564 4.856 4.972 2.502 3.723 3.317 4.086 5.551 3.198 0.000 0.000 0.000 4.684 3.480 2.473 2.954 5.293 1.911 0.0 0.0 0.0 10.452 8.917 5.565 0.000 4.649 10.106 8.299 5.735 5.963 5.182 6.683 1 2 3 7 5 4 6 12 10 9 11 8 0 14 15 18 16 19 17 21 25 31 26 32 29 30 24 27 33 28 23 34 22 20 2 1 1 2 3 1 2 3 1 2 3 4 5 6 2 1 4 3 2 1 2 6 1 5 3 4 5 3 8 4 1 2 6 7 5 3 1 4 2 1 2 3 0 1 12/21/2019 14:06:10 12/21/2019 14:32:56 1606 5400 0
612 ANES 2019 Pilot Study version 20200204 613 1.02431222398371 .83758010555148 1 1 1 -1 3 4 2 __NA__ -1 3 1 -1 -1 -1 2 1 -1 2 1 2 1 2 2 2 2 2 6 84 64 30 22 32 35 72 72 55 86 47 31 68 -1 94 81 86 22 7 36 9 47 22 50 9 84 55 52 92 81 95 12 7 44 1 1 -1 2 2 2 2 1 2 2 -1 -1 -1 2 -1 -1 -1 5 5 4 3 -1 -1 -1 -1 Divisions between political parties 2 2 2 6 2 4 3 3 1 6 2 2 4 4 4 4 7 4 3 7 4 4 3 4 3 4 1 2 -1 1 5 -1 2 3 2 5 1 5 4 5 4 1 1 -1 -1 4 7 6 6 1 -1 1 -1 1 1 2 -1 2 -1 1 7 4 5 5 3 3 1 3 5 1 -1 2 -1 5 -1 4 -1 4 -1 2 2 5 1 5 2 -1 5 1 -1 5 1 5 2 1 1 chief justice of the supreme court 1.0 germany’s chancellor 1 6 1 1900 2 3 3 __NA__ -1 __NA__ -1 2 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 4 1 1 5 4 -1 -1 5 5.0 150 24.9585798816568 -1 -1 -1 -1 -1 -1 -1 -1 -1 12 -3, restricted access 3 2 -1 -1 -1 -3, restricted access -1 -1 -3, restricted access -1 1 2 2 2 2 1 1 2 -1 -1 -1 -1 -1 -1 -1 -1 2 1 2 2 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1 2 1 2 2 2 2 __NA__ 1 4 5 2 2 4 6 5 5 -1 -1 -1 7 5 5 -1 -1 -1 -1 -1 -1 3 1 1 1 1 2 -1 5 -1 -1 -1 -1 1 1956 2 5 6 2 1 5 __NA__ 8 1 3 3 1 1 __NA__ 2 4 6 7 11 __NA__ -7 -3, restricted access 9 -3 -3, restricted acces 1 465 235 9 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.243 3.020 0.000 3.433 7.511 4.965 0.000 3.581 6.209 0.0 0.000 2.925 4.003 25.662 13.037 4.463 3.753 5.600 3.381 6.252 4.518 2.812 9.894 4.929 2.778 5.832 5.727 4.280 0.000 3.867 3.478 3.981 3.025 3.286 2.592 2.281 2.555 2.242 2.648 2.226 3.077 2.471 2.854 2.669 3.061 2.852 5.107 2.574 4.639 4.481 6.531 0.000 5.708 7.900 4.943 7.870 3.926 7.024 5.924 0.000 0.0 0.0 3.238 4.684 4.924 5.501 9.809 0.000 0.000 0.000 0.000 31.713 4.181 5.273 3.075 7.229 5.289 6.673 7.706 7.426 5.979 8.905 4.617 7.412 5.539 5.063 5.251 5.593 8.633 18.134 17.326 5.016 7.104 5.791 8.768 4.127 0.000 36.514 29.273 0.000 0.000 4.784 6.217 10.501 5.440 6.374 0.000 3.519 0.000 7.381 4.392 0.000 7.148 0.000 3.936 13.038 9.676 4.330 4.904 3.679 3.798 3.528 4.469 6.102 5.554 0.000 7.300 0.000 5.332 0.000 5.190 0.000 3.610 0.000 7.910 6.348 6.007 0.000 5.542 0.000 6.402 6.346 6.125 7.072 0.000 26.005 14.638 8.166 18.556 9.838 4.741 0.00 0.00 0.0 0.000 0.000 0.000 6.946 0.0 0.0 0.0 8.284 0.000 6.478 3.581 0.000 0.000 9.086 6.066 0.000 0.000 0.000 0.000 4.296 6.292 5.919 0.000 0.000 0.000 0.000 0.00 0.000 15.869 0.000 14.369 0.000 11.323 0.000 7.745 4.216 4.151 3.852 2.921 3.461 3.777 3.105 3.208 2.620 0.000 0.000 0.000 5.218 2.276 2.375 0.000 0.000 0.000 0.0 0.0 0.0 3.437 4.377 5.111 3.906 0.000 6.466 0.000 0.000 0.000 0.000 4.235 1 2 3 4 7 5 6 12 8 10 11 9 14 0 15 18 17 16 19 25 26 31 34 24 32 28 22 21 33 29 30 20 23 27 1 2 1 3 2 1 2 3 3 1 2 4 5 6 2 5 4 3 1 1 2 4 2 3 1 8 4 1 2 3 5 6 7 2 4 3 1 5 1 3 2 0 0 12/21/2019 2:32:49 12/21/2019 2:55:45 1376 800 0

To see the count of non-missing observations and summary statistics such as the mean, standard deviation, minimum, maximum, and quantiles for the numeric columns, use the .describe() method:

anes.describe()
caseid form follow reg1a reg1b liveurban youthurban placeid1a placeid1b placeidimport turnout16a turnout16a1 turnout16b turnout16c vote16 turnout18a turnout18a1 particip_1 particip_2 particip_3 particip_4 particip_5 particip_6 particip_7 particip_8 particip_9 fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales vote20dem vote20cand vote20cand2 electable vote20jb vote20ew vote20bs cvote2020 tsplit1 contact1a contact1b contact2a contact2b contact3 contact4m_1 contact4m_2 contact4m_3 apppres5 frnpres5 immpres5 econpres5 apppres7 frnpres7 immpres7 econpres7 econnow finworry confecon improve1 national1 national2 conspire1 conspire2 conspire3 taxecon billtax trade1 trade2 trade3 trade4 richpoor2 guarinc lcself lcd lcr pop1 pop2 pop3 corrupt immignum refugees dreamstr dreamer dreamstr1 dreamstr2 wall5 wall7 pathway preturn popen release1 release2 famsep tchina trussia tiran tmexico tjapan hlthcare1 hlthcare2 abortion1 abortion2 freecol loans diversity5 diversity7 language buyback gw1 gw2 knowopioid1 knowopioid2 opioiddo sentence prek demo4 experts science exphelp elite1 elite2 elite3 elite4 ukraine1 ukraine2 excessive rural1alt1 rural1alt2 rural2alt1 rural2alt2 rural3alt1 rural3alt2 rural4alt1 rural4alt2 conf_unemp unemp conf_interfere interfere conf_autism autism1 autism2 conf_gmo gmo1 gmo2 conf_warm warm conf_illegal illegal impeach1 impeach2 pk_cjus_correct pk_germ_correct pk_sen pk_spend pk_geer cheat pid7x pid1d pid1r pidstr pidlean ngun shooting dem_activduty milyears milyr1 milyr2 milyr3 milyr4 milyr5 milyr6 combat harass1a harass1b rr1 rr2 rr3 rr4 health1a health1b hospital feet inches nweight disable1 disable2 disable3 disable4 disable5 disable6 smoker1 smoker2 exercise relig1a relig2a att1 att2 att3 relig1b relig2b relig3b attother exptravel_ever exphomesch expfarm expffood expconvert expholiday explie expshark expdivorce exparrest expoverdose expdefault exppubasst exphybrid expmistake explightning exptravel_year expindian exphunt expflag exppublib explottery expshoponline exppubtrans expfight expavoid expknowimmig expknowtrans expbuyusa expretire expcolldebt expknowpris socmed_1 socmed_2 socmed_3 socmed_4 socmed_5 socmed_6 socmed_7 socmed_8 socmed_9 facebook1 facebook2 facebook3 twitter1 twitter2 twitter3 instagram1 instagram2 instagram3 reddit1 reddit2 reddit3 youtube1 youtube2 youtube3 snapchat1 snapchat2 snapchat3 tiktok1 tiktok2 tiktok3 raceid racework whitejob race_sub1 race_sub2 voterid1 voterid2 serious photo1 photo2 photo3 photo4 reinterview birthyr gender educ marstat child18 race employ faminc_new votereg ideo5 pid7 newsint presvote16post pew_bornagain pew_religimp pew_churatd pew_prayer religpew religpew_protestant inputstate zipCode region qualityControl_overall_scale abortion1_skp abortion2_skp apppres5_skp apppres7_skp att1_skp att2_skp att3_skp attother_skp autism1_skp autism2_skp billtax_skp buyback_skp cexp1_grid_skp cexp2_grid_skp cheat_skp combat_skp confecon_skp conspire1_skp conspire2_skp conspire3_skp contact1a_skp contact1b_skp contact2a_skp contact2b_skp contact3_skp corrupt_skp cvote2020_skp dem_activduty_skp demo4_skp disable_grid_skp diversity5_skp diversity7_skp dreamer_skp econnow_skp econpres5_skp econpres7_skp electable_skp elite1_skp elite2_skp elite3_skp elite4_skp excessive_skp exercise_skp exp1_grid_skp exp2_grid_skp experts_skp exphelp_skp facebook1_skp facebook2_skp facebook3_skp finworry_skp follow_skp freecol_skp frnpres5_skp frnpres7_skp ftasian_skp ftbiden_skp ftblack_skp ftbritain_skp ftbuttigieg_skp ftcanada_skp ftchina_skp ftfrance_skp ftgermany_skp ftharris_skp fthisp_skp ftice_skp ftillegal_skp ftimmig1_skp ftimmig2_skp ftiran_skp ftisrael_skp ftjapan_skp ftjournal_skp ftmexico_skp ftmuslim_skp ftnato_skp ftnkorea_skp ftnra_skp ftobama_skp ftpales_skp ftrussia_skp ftsanders_skp ftsaudi_skp fttrump_skp ftturkey_skp ftukraine_skp ftun_skp ftwarren_skp ftwhite_skp gmo1_skp gmo2_skp guarinc_skp gw_grid_skp harass1a_skp harass1b_skp health1a_skp health1b_skp hlthcare1_skp hlthcare2_skp hospital_skp illegal_skp immignum_skp immpres5_skp immpres7_skp impeach1_skp impeach2_skp improve1_skp instagram1_skp instagram2_skp instagram3_skp interfere_skp knowopioid1_skp knowopioid2_skp language_skp lc_grid_skp liveurban_skp loans_skp milyears_skp milyr_skp mip_skp national1_skp national2_skp ngun_skp opioiddo_skp particip_skp path_grid_skp pid1d_skp pid1r_skp pidlean_skp pidstr_skp pk_cjus_skp pk_geer_skp pk_germ_skp pk_sen_skp pk_spend_skp placeid1a_skp placeid1b_skp placeidimport_skp pop_grid_skp prek_skp raceid_skp racework_skp reddit1_skp reddit2_skp reddit3_skp refugees_skp reg1a_skp reg1b_skp reinterivew_skp relig1a_skp relig1b_skp relig2a_skp relig2b_skp relig3b_skp rexp1_grid_skp rexp2_grid_skp richpoor2_skp rr_grid_skp rural1alt1_skp rural1alt2_skp rural2alt1_skp rural2alt2_skp rural3alt1_skp rural4alt1_skp rural4alt2_skp science_skp sentence_skp serious_skp shooting_skp smoker1_skp smoker2_skp snapchat1_skp snapchat2_skp snapchat3_skp socmed_skp tall_skp taxecon_skp threat_grid_skp tiktok1_skp tiktok2_skp tiktok3_skp trade1_skp trade2_skp trade3_skp trade4_skp tsplit1_skp turnout16a_skp turnout16b_skp turnout16c_skp turnout18a_skp twitter1_skp twitter2_skp twitter3_skp ukraine1_skp ukraine2_skp unemp_skp vote16_skp vote20bs_skp vote20cand2_skp vote20cand_skp vote20dem_skp vote20ew_skp vote20jb_skp voterid1_skp voterid2_skp wall7_skp wall5_skp warm_skp nweight_skp whitejob_skp youthurban_skp youtube1_skp youtube2_skp youtube3_skp rural3alt2_skp follow_page_timing reg1a_page_timing reg1b_page_timing liveurban_page_timing youthurban_page_timing placeid1a_page_timing placeid1b_page_timing placeidimport_page_timing turnout16a_page_timing turnout16b_page_timing turnout16c_page_timing vote16_page_timing turnout18a_page_timing particip_page_timing fttrump_page_timing ftobama_page_timing ftbiden_page_timing ftwarren_page_timing ftsanders_page_timing ftbuttigieg_page_timing ftharris_page_timing ftblack_page_timing ftwhite_page_timing fthisp_page_timing ftasian_page_timing ftmuslim_page_timing ftillegal_page_timing ftimmig1_page_timing ftimmig2_page_timing ftjournal_page_timing ftnato_page_timing ftun_page_timing ftice_page_timing ftnra_page_timing ftchina_page_timing ftnkorea_page_timing ftmexico_page_timing ftsaudi_page_timing ftukraine_page_timing ftiran_page_timing ftbritain_page_timing ftgermany_page_timing ftjapan_page_timing ftisrael_page_timing ftfrance_page_timing ftcanada_page_timing ftturkey_page_timing ftrussia_page_timing ftpales_page_timing vote20dem_page_timing vote20cand_page_timing vote20cand2_page_timing electable_page_timing vote20jb_page_timing vote20ew_page_timing vote20bs_page_timing cvote2020_page_timing tsplit1_page_timing contact1a_page_timing contact1b_page_timing contact2a_page_timing contact2b_page_timing contact3_page_timing apppres5_page_timing frnpres5_page_timing immpres5_page_timing econpres5_page_timing apppres7_page_timing frnpres7_page_timing immpres7_page_timing econpres7_page_timing mip_page_timing econnow_page_timing finworry_page_timing confecon_page_timing improve1_page_timing national1_page_timing national2_page_timing conspire1_page_timing conspire2_page_timing conspire3_page_timing taxecon_page_timing billtax_page_timing trade1_page_timing trade2_page_timing trade3_page_timing trade4_page_timing richpoor2_page_timing guarinc_page_timing lc_grid_page_timing pop_grid_page_timing corrupt_page_timing immignum_page_timing refugees_page_timing dreamer_page_timing wall_page_timing wall7_page_timing path_grid_page_timing threat_grid_page_timing hlthcare1_page_timing hlthcare2_page_timing abortion1_page_timing abortion2_page_timing freecol_page_timing loans_page_timing diversity5_page_timing diversity7_page_timing language_page_timing buyback_page_timing gw_grid_page_timing knowopioid1_page_timing knowopioid2_page_timing opioiddo_page_timing sentence_page_timing prek_page_timing demo4_page_timing experts_page_timing science_page_timing exphelp_page_timing elite1_page_timing elite2_page_timing elite3_page_timing elite4_page_timing ukraine1_page_timing ukraine2_page_timing excessive_page_timing rural1alt1_page_timing rural1alt2_page_timing rural2alt1_page_timing rural2alt2_page_timing rural3alt1_page_timing rural3alt2_page_timing rural4alt1_page_timing rural4alt2_page_timing unemp_page_timing interfere_page_timing autism1_page_timing autism2_page_timing gmo1_page_timing gmo2_page_timing warm_page_timing illegal_page_timing impeach1_page_timing impeach2_page_timing pk2_intro_page_timing pk_cjus_page_timing pk_germ_page_timing pk_sen_page_timing pk_spend_page_timing pk_geer_page_timing cheat_page_timing pid1d_page_timing pid1r_page_timing pidstr_page_timing pidlean_page_timing ngun_page_timing shooting_page_timing dem_activduty_page_timing milyears_page_timing milyr_page_timing combat_page_timing harass1a_page_timing harass1b_page_timing rr_grid_page_timing health1a_page_timing health1b_page_timing hospital_page_timing tall_page_timing nweight_page_timing disable_grid_page_timing smoker1_page_timing smoker2_page_timing exercise_page_timing relig1a_page_timing relig2a_page_timing att1_page_timing att2_page_timing att3_page_timing relig1b_page_timing relig2b_page_timing relig3b_page_timing attother_page_timing exp1_grid_page_timing exp2_grid_page_timing rexp1_grid_page_timing rexp2_grid_page_timing cexp1_grid_page_timing cexp2_grid_page_timing socmed_page_timing facebook1_page_timing facebook2_page_timing facebook3_page_timing twitter1_page_timing twitter2_page_timing twitter3_page_timing instagram1_page_timing instagram2_page_timing instagram3_page_timing reddit1_page_timing reddit2_page_timing reddit3_page_timing youtube1_page_timing youtube2_page_timing youtube3_page_timing snapchat1_page_timing snapchat2_page_timing snapchat3_page_timing tiktok1_page_timing tiktok2_page_timing tiktok3_page_timing raceid_page_timing racework_page_timing whitejob_page_timing voterid1_page_timing voterid2_page_timing serious_page_timing photo1_page_timing photo2_page_timing photo3_page_timing photo4_page_timing reinterview_page_timing ord_fttrump ord_ftobama ord_ftbiden ord_ftwarren ord_ftsanders ord_ftbuttigieg ord_ftharris ord_ftblack ord_ftwhite ord_fthisp ord_ftasian ord_ftmuslim ord_ftimmig1 ord_ftimmig2 ord_ftjournal ord_ftnato ord_ftun ord_ftice ord_ftnra ord_ftchina ord_ftnkorea ord_ftmexico ord_ftsaudi ord_ftukraine ord_ftiran ord_ftbritain ord_ftgermany ord_ftjapan ord_ftisrael ord_ftfrance ord_ftcanada ord_ftturkey ord_ftrussia ord_ftpales ord_conspire1 ord_conspire2 ord_conspire3 ord_lcself ord_lcd ord_lcr ord_pathway ord_preturn ord_popen ord_release1 ord_release2 ord_famsep ord_gw1 ord_gw2 ord_elite1 ord_elite2 ord_elite3 ord_elite4 ord_lc_reverse ord_att2_reverse duration
count 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.0 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000
mean 1583.000000 1.498894 1.672038 0.117220 0.140284 2.665403 2.641390 0.699842 0.740284 2.357662 0.111216 -0.974408 -0.429068 -0.46951 1.146603 1.318799 -0.875197 1.880885 1.802528 1.93049 1.659716 1.790205 1.869510 1.812322 1.663191 1.572828 49.350711 57.589573 56.269194 78.185150 55.091311 124.552923 95.901738 70.738073 70.762717 68.907425 69.159242 51.828120 42.086888 33.718167 35.901422 49.866667 96.762717 70.290995 69.216430 63.884992 37.933965 20.754818 53.505845 32.030648 48.959874 26.515640 69.140284 60.447077 64.789889 59.599052 58.558610 72.419589 37.601264 31.415166 39.97030 1.743760 1.376303 0.117852 0.232859 1.878041 1.882148 1.862559 1.989889 2.216430 0.402212 0.417062 -0.706793 -0.783886 0.496367 -0.911216 -0.896051 -0.890679 1.093523 1.101738 1.073618 0.900790 1.723855 1.717852 1.691943 1.430648 2.547235 2.394945 2.545024 4.408531 2.426224 3.007583 3.175671 2.932070 3.010742 3.770616 3.777883 2.112480 2.911216 2.533017 2.250553 2.906161 4.480885 4.109321 2.310269 5.544708 2.213902 2.040126 3.823697 3.617378 4.011058 3.407583 1.587678 1.666983 -0.321643 0.848025 0.993365 1.559558 2.402528 2.712480 3.378831 3.442338 3.149131 3.816114 1.213270 1.336809 1.291627 0.618957 0.370300 1.535861 0.860348 0.87267 1.687520 4.393681 4.454660 0.721011 1.154818 2.242022 1.506477 2.475513 2.327962 1.604423 0.674882 2.706793 1.153555 3.622749 4.952923 3.009479 3.272354 3.230016 2.983886 3.503002 1.792733 3.063823 3.668562 1.306477 0.958610 1.056872 1.167457 1.772196 1.696682 1.770616 1.747235 1.854344 1.903318 3.534913 1.764929 3.880253 1.248025 3.804423 0.400948 0.400000 3.306477 0.248025 0.181043 3.779463 1.249605 3.616430 1.637599 3.950079 3.956082 0.465403 0.610742 5.828120 2.326698 1671.986414 1.838863 3.481517 0.495419 0.450237 0.340600 0.194945 1.831596 0.528910 2.835703 17.943128 -0.575671 -0.58357 -0.633175 -0.635387 -0.607899 -0.593997 -0.599368 0.839810 0.786098 2.560506 2.957030 3.135861 2.998420 1.109321 0.971248 0.340600 5.071090 5.406975 183.066035 0.412006 0.450553 0.423065 0.404423 0.452449 0.428436 0.274882 -0.245182 1.002844 2.697630 -0.556714 1.592733 0.351975 -0.642970 -0.415482 -0.206319 -0.610111 -0.542496 0.152291 0.461295 0.332070 0.327962 0.402528 0.257820 0.037915 0.485308 0.334913 0.377567 0.326698 0.395261 0.313744 0.448973 0.020221 0.472354 0.310585 0.328910 0.300790 0.254028 0.212322 0.178831 0.036967 0.233491 0.385782 0.278673 0.144392 0.337757 0.182306 0.215482 0.408531 0.372196 1.198736 1.597472 1.602844 1.826856 1.284676 1.827488 1.947235 1.974724 1.922907 1.943760 2.068246 3.043602 1.055608 0.533017 1.028436 0.919115 1.024329 1.206951 -0.035071 -0.190521 -0.049605 2.404107 2.520695 3.040126 -0.126066 -0.071406 -0.037599 -0.690047 -0.715008 -0.701106 2.556398 2.773460 2.273302 1.416114 1.416114 0.342496 0.344392 4.567773 0.286572 0.253081 0.207583 0.218641 1.054344 1967.966509 1.516272 3.496367 2.636651 1.791469 1.667615 3.492575 18.533333 1.156082 3.388310 4.031596 1.925118 3.222433 1.705845 2.248341 4.283096 3.931122 5.137125 0.030016 28.057820 -3.0 2.682464 7.612006 0.001264 0.001896 0.001896 0.001264 0.002528 0.000948 0.0 0.000316 0.005371 0.012954 0.002844 0.000316 0.005687 0.006635 0.007267 0.001580 0.003476 0.006635 0.003476 0.004107 0.001264 0.003791 0.000316 0.000632 0.001264 0.005687 0.001580 0.003791 0.005687 0.016114 0.000948 0.000948 0.036019 0.003476 0.002844 0.004739 0.000316 0.005371 0.007267 0.006319 0.004423 0.000632 0.000632 0.013586 0.015166 0.003791 0.004423 0.000316 0.002212 0.006319 0.001896 0.001580 0.000948 0.004107 0.005055 0.012954 0.015798 0.005687 0.005055 0.033807 0.002528 0.006635 0.004107 0.004423 0.027172 0.008215 0.009795 0.007583 0.007267 0.009479 0.008847 0.006951 0.00316 0.006951 0.004107 0.012322 0.009795 0.008531 0.016746 0.042338 0.012638 0.005371 0.018641 0.007899 0.098578 0.009163 0.010427 0.007899 0.021485 0.008215 0.006003 0.012638 0.000316 0.006003 0.002528 0.000948 0.000316 0.000316 0.000948 0.001264 0.0 0.014534 0.003476 0.001580 0.002528 0.002212 0.007583 0.002212 0.001580 0.002212 0.004107 0.022433 0.011374 0.000948 0.001264 0.023697 0.00316 0.008847 0.000316 0.000316 0.072038 0.001896 0.001264 0.0 0.004107 0.004739 0.020221 0.000316 0.0 0.000632 0.000316 0.090047 0.211374 0.051185 0.029068 0.007583 0.000316 0.001580 0.004107 0.015798 0.006003 0.006635 0.008215 0.000948 0.000948 0.001580 0.007267 0.001580 0.000948 0.004423 0.002844 0.000632 0.000316 0.001580 0.0 0.009479 0.009479 0.005687 0.012954 0.001580 0.000948 0.007267 0.004107 0.002212 0.002844 0.005371 0.005687 0.000632 0.002212 0.0 0.001896 0.000632 0.000632 0.000948 0.001580 0.002212 0.012954 0.005371 0.010427 0.000316 0.000316 0.000948 0.000632 0.011690 0.014218 0.003791 0.004107 0.001264 0.000632 0.000632 0.003476 0.001264 0.001580 0.002844 0.004739 0.016746 0.024961 0.001896 0.006319 0.003791 0.001264 0.003476 0.006635 0.005371 0.000948 0.001264 0.001264 0.000948 0.014218 0.018325 0.006003 0.005687 0.000948 0.00316 0.005687 0.002528 16.249831 2.851289 4.758153 9.947926 9.746972 5.948907 6.459573 10.551217 7.434285 7.914338 3.746515 4.370908 16.349738 26.844717 14.821811 9.187120 6.666985 9.203342 6.349779 10.455729 6.368160 8.764240 8.407842 9.570333 6.737906 7.946085 7.463983 3.537166 3.961809 6.674058 8.099450 6.692616 13.294170 7.196664 6.297405 5.605068 6.167858 8.368036 5.799524 6.397577 5.627565 5.504396 7.314327 7.127235 5.342872 5.601698 7.028444 10.067284 6.142951 9.488965 8.053627 2.994213 5.99733 10.199777 6.486621 6.119887 7.631131 11.593834 6.120466 8.947167 0.397838 0.472865 4.374793 4.534931 3.620925 2.905165 2.821052 6.751886 4.862747 3.070789 3.232060 48.462781 14.782748 12.893939 7.614476 26.695615 11.381638 14.058791 13.468457 14.334284 16.524850 17.648784 14.067368 14.669283 12.939733 11.314433 11.419157 14.676886 34.775299 22.727071 31.546775 12.257626 16.569494 20.682562 20.941951 4.080805 16.403611 83.353785 18.758895 11.695224 6.509795 6.051318 7.318181 16.792928 15.692625 6.401828 7.377582 10.994774 9.668506 28.472640 63.464335 4.374284 14.293756 28.085451 15.632500 31.944563 13.800104 10.805658 18.735078 9.756997 9.406772 10.210200 11.382238 13.971114 10.983584 5.463366 7.046347 9.188105 6.174507 6.588835 5.950917 8.755212 5.610690 7.194316 16.579748 15.251651 4.975384 6.640365 5.351997 6.936025 15.165952 12.869905 13.785718 13.804272 5.174459 76.840578 21.269621 14.060265 17.778390 20.862071 8.696251 0.627698 0.474750 0.389372 0.341393 4.223396 4.235764 8.487581 0.113170 1.547438 0.962805 5.052195 4.617948 44.516415 3.460289 3.956396 5.144718 11.258700 7.711925 14.459429 2.299373 1.370671 3.840478 5.087858 0.797151 12.819019 3.932843 0.980799 2.208268 2.328449 0.906647 2.492929 16.092442 14.840867 9.559169 12.830056 9.584312 7.607143 12.263852 9.575728 6.777868 5.412755 2.243678 2.985571 2.739002 2.054936 2.432392 1.481347 8.649955 0.766930 0.623996 4.825806 4.369771 3.329777 0.882941 0.742097 0.523940 0.207807 0.163375 0.130342 8.343833 10.489896 11.550905 3.259258 7.736379 18.957856 5.420974 3.359211 3.170164 3.117318 7.152483 1.0 2.0 5.006319 4.959558 4.985466 5.012322 5.036335 10.013270 10.008847 10.000000 10.000000 9.977883 7.015482 6.984518 15.0 17.534281 17.490679 17.454976 17.520063 26.947235 27.053081 27.027488 27.082148 27.173144 27.053397 26.917536 26.979147 27.073934 26.939021 27.024329 26.875829 27.012006 27.012954 26.828752 1.992101 1.995577 2.012322 1.0 2.503633 2.496367 2.002844 2.023381 1.973776 4.0 5.0 6.0 1.512480 1.487520 2.488784 2.515640 2.496367 2.499210 0.0 0.506161 8663.017694
std 913.801127 0.500078 0.926089 1.195428 1.247464 1.070029 1.096192 1.880001 1.906350 1.306302 1.158824 0.364741 0.980422 0.96956 1.202344 0.576437 0.632481 0.323975 0.398155 0.25436 0.473880 0.407226 0.336895 0.390516 0.472694 0.494746 84.472485 73.002606 120.196311 189.367529 115.863403 276.040047 235.892477 23.964258 23.046131 24.333374 23.753420 29.722614 32.037712 39.488803 40.827825 31.566846 196.277400 138.611353 129.933928 134.687957 24.924698 23.160735 26.513570 24.203703 24.480570 24.801873 23.691241 24.822482 23.868048 29.137909 25.092663 23.950280 23.866562 24.985195 27.53408 0.785695 3.227412 1.503372 1.482449 0.920157 0.930424 0.906015 1.224961 1.039782 1.427890 1.443793 0.919295 0.791903 1.525718 0.454661 0.528816 0.552598 2.426304 2.430919 2.417922 2.236128 3.242645 3.232316 3.232296 2.951463 1.190750 1.230450 1.217087 1.984036 1.256340 1.196790 1.138945 1.037598 1.288336 1.992199 2.186822 0.958025 1.095626 1.004384 0.961705 1.513856 2.134250 2.006010 1.486062 1.611915 1.110544 1.038133 1.146316 1.005617 1.695779 1.905662 0.799201 0.850188 1.295056 1.470947 2.365528 3.122146 1.480934 1.557206 1.599698 1.574602 1.511817 1.503996 2.386954 2.495949 2.457080 1.827282 1.565067 3.014146 2.102935 2.04003 3.125481 2.265519 2.253859 1.940376 2.475170 1.413388 3.017706 1.471103 1.340742 0.489051 2.287246 1.601586 2.532555 2.135247 1.934449 1.166553 1.239014 1.087009 1.235559 1.157237 0.965923 1.362203 1.450328 0.857907 2.086891 2.224431 2.340165 2.908679 2.856271 2.967346 2.953912 3.000624 3.058243 1.352924 0.620221 1.269303 0.607137 1.309541 1.473984 1.508258 1.218110 1.303537 1.338110 1.222687 0.548764 1.302573 0.642797 2.628259 2.633112 0.445501 0.487659 6.347812 1.355817 671.902905 0.425120 2.961733 1.682924 1.681818 1.184448 1.620499 39.321173 1.715605 0.429832 193.708767 1.042572 1.02669 0.919159 0.914008 0.975749 1.005246 0.965917 1.986028 1.891677 1.459922 1.511874 1.461211 1.461797 2.164109 2.155637 1.383124 0.984232 3.517829 63.705234 1.486639 1.514105 1.494672 1.488721 1.515417 1.498529 1.325245 1.471359 2.214977 4.999799 1.239248 0.514036 1.845648 0.868132 1.307694 1.226328 1.119147 0.977874 1.213675 1.486827 1.387591 1.384122 1.443979 1.321515 1.083646 1.503322 1.419009 1.460803 1.420256 1.466496 1.409451 1.490277 1.076221 1.514034 1.360878 1.376685 1.343812 1.317940 1.259266 1.265958 1.109190 1.329245 1.451487 1.370888 1.195363 1.384164 1.255306 1.294382 1.460908 1.433035 0.399112 0.490485 0.489386 0.378431 0.451331 0.377884 0.223599 0.156988 0.266781 2.140158 1.957453 2.295352 2.848149 2.088270 2.609150 2.721554 2.595528 2.787311 2.291847 1.878594 2.135665 2.678055 2.445997 2.663485 2.119435 2.085549 2.149187 1.401072 1.230273 1.283618 1.621324 1.725155 1.281567 1.025432 1.025432 1.449828 1.475957 1.010175 1.453350 1.376188 1.321396 1.412950 0.272329 17.149547 0.499814 1.492629 1.867967 0.406322 1.272128 2.409492 31.326407 0.426262 1.464257 2.277164 1.451628 2.487606 0.480051 1.185511 1.755823 2.502905 4.504054 15.766871 15.948919 0.0 1.026802 2.499655 0.035533 0.043506 0.043506 0.035533 0.050220 0.030778 0.0 0.017775 0.073103 0.113095 0.053258 0.017775 0.075211 0.081198 0.084950 0.039721 0.058860 0.081198 0.058860 0.063968 0.035533 0.061468 0.017775 0.025134 0.035533 0.075211 0.039721 0.061468 0.075211 0.125933 0.030778 0.030778 0.186367 0.058860 0.053258 0.068690 0.017775 0.073103 0.084950 0.079254 0.066372 0.025134 0.025134 0.115783 0.122232 0.061468 0.066372 0.017775 0.046984 0.079254 0.043506 0.039721 0.030778 0.063968 0.070932 0.113095 0.124712 0.075211 0.070932 0.180761 0.050220 0.081198 0.063968 0.066372 0.162611 0.090277 0.098498 0.086763 0.084950 0.096911 0.093655 0.083096 0.05613 0.083096 0.063968 0.110337 0.098498 0.091982 0.128337 0.201391 0.111725 0.073103 0.135276 0.088538 0.298142 0.095298 0.101593 0.088538 0.145017 0.090277 0.077259 0.111725 0.017775 0.077259 0.050220 0.030778 0.017775 0.017775 0.030778 0.035533 0.0 0.119697 0.058860 0.039721 0.050220 0.046984 0.086763 0.046984 0.039721 0.046984 0.063968 0.148110 0.106059 0.030778 0.035533 0.152126 0.05613 0.093655 0.017775 0.017775 0.258592 0.043506 0.035533 0.0 0.063968 0.068690 0.140778 0.017775 0.0 0.025134 0.017775 0.286295 0.408348 0.220409 0.168024 0.086763 0.017775 0.039721 0.063968 0.124712 0.077259 0.081198 0.090277 0.030778 0.030778 0.039721 0.084950 0.039721 0.030778 0.066372 0.053258 0.025134 0.017775 0.039721 0.0 0.096911 0.096911 0.075211 0.113095 0.039721 0.030778 0.084950 0.063968 0.046984 0.053258 0.073103 0.075211 0.025134 0.046984 0.0 0.043506 0.025134 0.025134 0.030778 0.039721 0.046984 0.113095 0.073103 0.101593 0.017775 0.017775 0.030778 0.025134 0.107505 0.118407 0.061468 0.063968 0.035533 0.025134 0.025134 0.058860 0.035533 0.039721 0.053258 0.068690 0.128337 0.156029 0.043506 0.079254 0.061468 0.035533 0.058860 0.081198 0.073103 0.030778 0.035533 0.035533 0.030778 0.118407 0.134147 0.077259 0.075211 0.030778 0.05613 0.075211 0.050220 91.689491 8.013374 75.269861 89.293214 98.002761 13.326773 31.622833 77.918708 74.763266 306.564583 11.010138 25.512346 358.175432 123.517520 56.211355 13.970517 10.154124 97.829508 8.604871 189.550416 11.777612 94.479839 26.059846 147.990913 7.492682 51.463324 14.962254 9.763798 18.387004 19.348970 48.523896 25.024014 254.182999 20.081360 25.769919 6.804976 25.557934 87.159584 8.803043 31.211370 8.772881 14.073176 60.280534 63.342451 8.978854 8.979428 51.363497 240.697989 13.561271 26.876109 203.621035 7.233232 22.61214 52.163298 30.063915 56.660079 12.409541 33.913834 26.821527 91.273237 1.411344 2.944575 12.159694 14.317243 9.163497 9.957565 7.366386 91.724847 37.105394 9.114192 16.300898 107.099793 92.655169 194.082786 45.561832 721.571430 46.519450 43.163617 33.620619 20.000704 37.026307 93.475135 20.568615 79.109682 40.477215 45.763967 43.374388 42.251312 898.058434 22.214917 143.545418 23.637567 45.784958 267.363429 31.037061 10.980474 488.503496 999.359831 169.557500 141.053492 81.488826 16.638078 115.163808 77.248099 130.874965 12.516527 16.382132 23.934882 122.050078 262.044279 2996.102211 10.764148 65.549654 976.066908 53.151902 865.064211 28.589297 31.986785 397.158687 58.267161 25.350807 33.802799 47.396083 108.038556 15.474524 30.568121 39.538143 104.069768 42.793900 15.981852 19.768094 96.167439 22.457806 78.979356 33.456917 128.393785 9.028735 17.827140 7.909739 16.491784 63.505379 40.691826 95.848241 121.228974 25.408713 2905.712060 35.065594 29.237517 29.337386 28.634091 97.000902 5.705071 1.816856 1.419760 2.504516 6.802250 10.172237 19.951727 1.336745 5.052157 3.423748 7.744789 9.349799 102.914053 10.108189 11.249815 13.926650 21.377974 11.329708 97.707176 4.153955 12.476203 15.827777 14.087427 3.560941 54.941761 60.732149 2.785403 21.435226 13.708400 3.780030 7.317347 67.277601 36.232032 18.145739 92.075579 21.143147 24.664814 111.209349 230.160421 20.793832 11.490907 6.467550 23.008330 42.175293 6.105756 15.858954 3.577448 417.484339 4.379992 5.055334 15.946097 12.096853 10.209333 5.843517 6.763745 2.938336 1.081654 1.045189 1.036706 22.916155 29.939871 48.979658 5.583838 145.072732 146.792561 15.338817 5.809931 4.962913 21.673566 6.071246 0.0 0.0 1.421778 1.413188 1.422162 1.401024 1.412740 1.387073 1.426868 1.390322 1.437928 1.428937 7.001089 7.001089 0.0 1.121496 1.109517 1.115463 1.124654 4.340741 4.337860 4.274798 4.287866 4.363288 4.331476 4.313910 4.269546 4.361824 4.316758 4.336696 4.291975 4.344284 4.356668 4.275706 0.813291 0.826997 0.809340 0.0 0.500066 0.500066 0.818360 0.810072 0.820645 0.0 0.0 0.0 0.499923 0.499923 1.113481 1.111154 1.129034 1.118917 0.0 0.500041 36096.187009
min 1.000000 1.000000 1.000000 -1.000000 -1.000000 1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -1.000000 -1.00000 -1.000000 1.000000 -7.000000 1.000000 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 0.000000 -7.000000 -7.000000 -7.000000 -7.000000 0.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 0.000000 0.000000 0.000000 -7.000000 -7.000000 0.000000 -7.000000 -7.000000 -7.00000 -7.000000 -7.000000 -7.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 -7.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -7.000000 1.000000 -7.000000 -7.000000 1.000000 1.000000 -7.000000 -7.000000 1.000000 -7.000000 1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -1.000000 -1.000000 -1.00000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 1.000000 -1.000000 -7.000000 -7.000000 1.000000 -7.000000 -7.000000 -1.000000 1.000000 -7.000000 -7.000000 -7.000000 1.000000 1.000000 -7.000000 -7.000000 1.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 -1.000000 -7.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 -1.000000 -7.000000 1.000000 1.000000 0.000000 0.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -1.000000 -1.00000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 -7.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -7.000000 -1.000000 -1.000000 -1.000000 -7.000000 1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 1926.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -7.000000 1.000000 1.000000 -7.000000 1.000000 -7.000000 1.000000 -7.000000 1.000000 1.000000 1.000000 -7.000000 -7.000000 1.000000 -3.0 1.000000 -7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.649000 0.000000 0.000000 0.629000 0.117000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.738000 1.137000 1.291000 0.414000 0.388000 0.278000 0.486000 0.496000 0.468000 0.473000 0.540000 0.631000 0.527000 0.488000 0.341000 0.000000 0.000000 0.549000 0.595000 0.473000 0.557000 0.555000 0.060000 0.271000 0.105000 0.463000 0.122000 0.218000 0.190000 0.215000 0.306000 0.108000 0.118000 0.623000 0.185000 0.072000 0.137000 0.902000 0.000000 0.000000 0.00000 0.719000 0.383000 0.585000 0.604000 0.607000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.812000 0.671000 0.629000 0.649000 0.717000 0.693000 0.624000 0.512000 0.544000 0.496000 0.603000 0.303000 0.563000 0.304000 0.539000 0.505000 0.588000 0.561000 1.114000 0.900000 0.780000 0.663000 0.657000 0.727000 0.000000 0.000000 1.350000 0.000000 0.000000 0.000000 0.000000 0.000000 0.533000 0.237000 0.000000 0.000000 0.607000 0.000000 1.349000 0.964000 0.000000 0.513000 0.000000 0.672000 0.593000 0.668000 0.595000 0.633000 0.413000 0.575000 0.481000 0.636000 0.567000 0.756000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.846000 0.751000 0.000000 0.000000 0.000000 0.000000 0.615000 0.640000 0.716000 0.243000 0.000000 0.540000 0.458000 0.455000 0.752000 0.473000 0.345000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.765000 0.000000 0.000000 0.000000 0.000000 0.000000 1.286000 0.000000 0.000000 0.000000 0.533000 0.471000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.913000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.788000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.402000 0.000000 0.000000 0.736000 0.000000 0.000000 0.000000 0.000000 0.795000 1.0 2.0 3.000000 3.000000 3.000000 3.000000 3.000000 8.000000 8.000000 8.000000 8.000000 8.000000 0.000000 0.000000 15.0 16.000000 16.000000 16.000000 16.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 1.000000 1.000000 1.000000 1.0 2.000000 2.000000 1.000000 1.000000 1.000000 4.0 5.0 6.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 0.000000 492.000000
25% 792.000000 1.000000 1.000000 -1.000000 -1.000000 2.000000 2.000000 -1.000000 -1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.00000 1.000000 1.000000 -1.000000 2.000000 2.000000 2.00000 1.000000 2.000000 2.000000 2.000000 1.000000 1.000000 2.000000 11.000000 7.000000 4.000000 5.000000 9.000000 5.000000 51.000000 51.000000 50.000000 51.000000 31.000000 9.000000 -1.000000 -1.000000 21.000000 42.000000 26.000000 24.000000 6.000000 17.000000 2.000000 38.000000 10.000000 35.000000 4.000000 52.000000 49.000000 50.000000 42.000000 47.000000 56.000000 17.000000 8.000000 13.00000 1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 2.000000 1.000000 2.000000 3.000000 1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 1.000000 2.000000 2.000000 2.000000 2.000000 3.000000 2.000000 1.000000 5.000000 1.000000 1.000000 3.000000 3.000000 3.000000 2.000000 1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 2.000000 2.000000 2.000000 3.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.00000 -1.000000 2.000000 2.000000 -1.000000 -1.000000 1.000000 -1.000000 1.000000 1.000000 1.000000 -1.000000 1.000000 -1.000000 2.000000 4.000000 2.000000 2.000000 3.000000 2.000000 3.000000 1.000000 2.000000 3.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 3.000000 2.000000 3.000000 1.000000 3.000000 -1.000000 -1.000000 3.000000 -1.000000 -1.000000 3.000000 1.000000 3.000000 1.000000 1.000000 1.000000 0.000000 0.000000 4.000000 1.000000 1896.000000 2.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 3.000000 -1.000000 -1.000000 -1.00000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 2.000000 2.000000 2.000000 -1.000000 -1.000000 -1.000000 5.000000 2.500000 146.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 2.000000 1.000000 2.000000 2.000000 2.000000 2.000000 1.000000 1.000000 2.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 5.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1955.000000 1.000000 2.000000 1.000000 2.000000 1.000000 1.000000 4.000000 1.000000 2.000000 2.000000 1.000000 1.000000 1.000000 1.000000 3.000000 1.000000 1.000000 -7.000000 12.000000 -3.0 2.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 5.476000 0.000000 0.000000 3.515000 3.647000 0.000000 0.000000 4.747000 0.000000 0.000000 0.000000 1.797000 4.598000 9.838000 6.772000 4.698000 3.457000 3.311000 3.380000 3.419000 3.352000 3.461000 3.646000 3.322000 3.447000 3.504000 3.672000 0.000000 0.000000 3.341000 3.263000 3.361000 4.198000 3.611000 2.837000 2.910000 2.954000 2.894000 2.979000 2.913000 2.974000 2.792000 2.859000 2.963000 2.802000 2.900000 2.855000 2.886000 3.000000 3.696000 0.000000 0.000000 0.00000 4.360000 2.595000 2.010000 3.391000 3.970000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 12.829000 5.257000 4.640000 3.502000 6.281000 4.789000 6.328000 5.929000 6.502000 7.408000 7.088000 7.012000 5.757000 5.297000 3.854000 4.683000 5.831000 8.858000 12.148000 13.359000 6.270000 7.097000 6.055000 10.575000 0.000000 0.000000 30.919000 0.000000 0.000000 0.000000 0.000000 0.000000 6.918000 5.173000 0.000000 0.000000 5.631000 0.000000 9.924000 4.896000 0.000000 5.874000 0.000000 6.857000 6.707000 6.702000 4.917000 5.537000 3.566000 4.211000 4.569000 4.469000 5.747000 5.275000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8.812000 6.685000 0.000000 0.000000 0.000000 0.000000 6.545000 6.337000 6.242000 5.144000 0.000000 10.493000 8.273000 6.425000 8.426000 8.000000 4.150000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.959000 0.000000 0.000000 0.000000 0.000000 0.000000 20.150000 0.000000 0.000000 0.000000 6.232000 4.608000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6.272000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.862000 2.406000 2.812000 1.777000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.963000 4.780000 5.364000 0.000000 0.000000 8.305000 0.000000 0.000000 0.000000 0.000000 4.347000 1.0 2.0 4.000000 4.000000 4.000000 4.000000 4.000000 9.000000 9.000000 9.000000 9.000000 9.000000 0.000000 0.000000 15.0 17.000000 17.000000 16.000000 17.000000 23.000000 23.000000 23.000000 23.000000 23.000000 23.000000 23.000000 23.000000 23.000000 23.000000 23.000000 23.000000 23.000000 23.000000 23.000000 1.000000 1.000000 1.000000 1.0 2.000000 2.000000 1.000000 1.000000 1.000000 4.0 5.0 6.0 1.000000 1.000000 1.000000 2.000000 1.000000 2.000000 0.0 0.000000 1486.000000
50% 1583.000000 1.000000 1.000000 1.000000 -1.000000 3.000000 3.000000 1.000000 -1.000000 2.000000 1.000000 -1.000000 -1.000000 -1.00000 1.000000 1.000000 -1.000000 2.000000 2.000000 2.00000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 38.000000 59.000000 44.000000 45.000000 44.000000 48.000000 41.000000 73.000000 73.000000 71.000000 71.000000 51.000000 45.000000 0.000000 -1.000000 50.000000 55.000000 52.000000 51.000000 50.000000 40.000000 11.000000 52.000000 31.000000 50.000000 20.000000 72.000000 60.000000 67.000000 58.000000 59.000000 78.000000 41.000000 30.000000 46.00000 2.000000 -1.000000 -1.000000 -1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 1.000000 -1.000000 -1.000000 -1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 3.000000 2.000000 2.000000 5.000000 2.000000 3.000000 3.000000 3.000000 3.000000 4.000000 4.000000 2.000000 3.000000 3.000000 2.000000 3.000000 4.000000 4.000000 2.000000 6.000000 2.000000 2.000000 4.000000 4.000000 4.000000 3.000000 1.000000 2.000000 -1.000000 1.000000 -1.000000 1.000000 2.000000 3.000000 3.000000 4.000000 3.000000 4.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 1.00000 1.000000 4.000000 4.000000 -1.000000 1.000000 2.000000 -1.000000 2.000000 2.000000 2.000000 -1.000000 2.000000 -1.000000 4.000000 5.000000 3.000000 3.000000 3.000000 3.000000 3.000000 2.000000 3.000000 4.000000 1.000000 -1.000000 1.000000 -1.000000 1.000000 -1.000000 1.000000 -1.000000 1.000000 -1.000000 4.000000 2.000000 4.000000 1.000000 4.000000 -1.000000 -1.000000 3.000000 1.000000 -1.000000 4.000000 1.000000 4.000000 2.000000 4.000000 4.000000 0.500000 1.000000 6.000000 2.000000 1965.000000 2.000000 4.000000 -1.000000 -1.000000 1.000000 -1.000000 -1.000000 -1.000000 3.000000 -1.000000 -1.000000 -1.00000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 2.000000 3.000000 3.000000 3.000000 1.000000 -1.000000 -1.000000 5.000000 5.000000 180.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 2.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 -1.000000 1.000000 2.000000 2.000000 2.000000 1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 4.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 3.000000 4.000000 5.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 3.000000 3.000000 2.000000 1.000000 1.000000 1.000000 -1.000000 5.000000 -1.000000 1.000000 1.000000 -1.000000 1.000000 1964.000000 2.000000 3.000000 1.000000 2.000000 1.000000 4.000000 7.000000 1.000000 3.000000 4.000000 1.000000 2.000000 2.000000 2.000000 5.000000 3.000000 2.000000 -7.000000 29.000000 -3.0 3.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 8.425000 1.148000 0.000000 5.173000 5.419000 1.055000 0.000000 6.665000 0.988000 0.000000 0.000000 3.122000 7.032000 17.468000 10.154000 6.835000 4.846000 4.691000 4.730000 4.899000 4.736000 5.131000 5.423000 4.980000 5.039000 5.022000 5.257000 0.884000 0.000000 4.727000 4.669000 4.536000 5.931000 4.934000 4.060000 4.188000 4.194000 3.994000 4.344000 4.132000 4.121000 3.938000 4.015000 4.219000 3.898000 3.999000 3.999000 4.055000 4.311000 6.254000 0.000000 0.000000 0.00000 6.760000 4.132000 3.146000 5.861000 8.135000 0.960000 0.000000 0.000000 0.000000 0.864000 0.000000 0.000000 0.000000 0.000000 1.424000 1.094000 0.951000 0.908000 23.544000 7.876000 6.621000 4.963000 9.121000 6.922000 9.405000 9.161000 10.419000 11.273000 10.243000 10.553000 9.038000 8.668000 7.159000 6.989000 9.117000 13.730000 18.257000 20.634000 8.629000 10.355000 9.629000 15.612000 0.000000 1.342000 47.008000 2.779000 0.000000 0.000000 1.074000 0.893000 10.864000 8.215000 0.000000 1.037000 8.268000 0.000000 15.747000 7.792000 0.000000 8.816000 0.000000 10.769000 11.015000 10.214000 7.299000 8.282000 5.555000 6.621000 6.894000 6.961000 8.453000 8.151000 0.000000 0.879000 0.000000 0.761000 0.000000 0.687000 0.000000 0.734000 0.000000 12.303000 9.403000 1.663000 0.000000 1.349000 0.000000 9.579000 9.006000 8.817000 7.981000 0.000000 17.346000 14.350000 9.257000 12.174000 12.731000 5.634000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.898000 0.000000 0.000000 0.000000 1.053000 0.000000 31.996000 1.959000 0.000000 0.000000 8.325000 6.065000 0.000000 0.000000 0.000000 0.000000 1.461000 0.000000 9.008000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.186000 0.000000 1.470000 0.000000 1.481000 0.000000 7.987000 4.057000 5.367000 4.373000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.714000 3.097000 2.158000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.898000 7.279000 7.799000 0.984000 0.000000 11.471000 0.833000 0.825000 1.095000 1.133000 6.219000 1.0 2.0 5.000000 5.000000 5.000000 5.000000 5.000000 10.000000 10.000000 10.000000 10.000000 10.000000 14.000000 0.000000 15.0 18.000000 17.000000 17.000000 18.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 2.000000 2.000000 2.000000 1.0 3.000000 2.000000 2.000000 2.000000 2.000000 4.0 5.0 6.0 2.000000 1.000000 2.000000 3.000000 2.000000 2.000000 0.0 1.000000 2049.000000
75% 2374.000000 2.000000 2.000000 1.000000 1.000000 4.000000 4.000000 2.000000 2.000000 3.000000 1.000000 -1.000000 1.000000 -1.00000 2.000000 2.000000 -1.000000 2.000000 2.000000 2.00000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 91.000000 91.000000 71.000000 75.000000 75.000000 70.000000 63.000000 91.000000 90.000000 90.000000 90.000000 75.000000 68.000000 72.000000 79.000000 77.000000 80.000000 77.000000 86.000000 85.000000 52.000000 35.000000 72.000000 50.000000 64.000000 47.000000 89.000000 80.000000 84.000000 86.000000 78.000000 92.000000 51.000000 50.000000 55.00000 2.000000 4.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 3.000000 2.000000 2.000000 -1.000000 -1.000000 2.000000 -1.000000 -1.000000 -1.000000 3.000000 3.000000 3.000000 3.000000 5.000000 5.000000 5.000000 4.000000 3.000000 3.000000 3.000000 6.000000 3.000000 4.000000 4.000000 4.000000 4.000000 5.000000 6.000000 3.000000 4.000000 3.000000 3.000000 4.000000 7.000000 6.000000 3.000000 7.000000 3.000000 3.000000 5.000000 4.000000 5.000000 4.000000 2.000000 2.000000 1.000000 2.000000 3.000000 4.000000 3.000000 4.000000 5.000000 5.000000 5.000000 5.000000 3.000000 4.000000 4.000000 2.000000 1.000000 4.000000 3.000000 3.00000 4.000000 7.000000 7.000000 3.000000 4.000000 3.000000 4.000000 3.000000 3.000000 2.000000 3.000000 4.000000 3.000000 5.000000 7.000000 4.000000 4.000000 4.000000 4.000000 4.000000 2.000000 4.000000 5.000000 2.000000 3.000000 3.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 5.000000 2.000000 5.000000 2.000000 5.000000 2.000000 2.000000 4.000000 1.000000 1.000000 5.000000 2.000000 5.000000 2.000000 7.000000 7.000000 1.000000 1.000000 6.000000 4.000000 1999.000000 2.000000 6.000000 2.000000 2.000000 1.000000 2.000000 0.000000 2.000000 3.000000 -1.000000 -1.000000 -1.00000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 2.000000 2.000000 4.000000 4.000000 4.000000 4.000000 3.000000 3.000000 2.000000 5.000000 8.000000 212.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 -1.000000 3.000000 7.000000 -1.000000 2.000000 2.000000 -1.000000 -1.000000 1.000000 -1.000000 -1.000000 1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 1.000000 1.000000 1.000000 1.000000 2.000000 2.000000 1.000000 2.000000 1.000000 1.000000 2.000000 2.000000 1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 3.000000 4.000000 5.000000 3.000000 2.000000 4.000000 3.000000 4.000000 5.000000 -1.000000 -1.000000 -1.000000 4.000000 5.000000 5.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 4.000000 4.000000 3.000000 2.000000 2.000000 1.000000 1.000000 5.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1983.000000 2.000000 5.000000 5.000000 2.000000 2.000000 5.000000 11.000000 1.000000 4.000000 6.000000 2.000000 7.000000 2.000000 3.000000 6.000000 7.000000 11.000000 3.000000 42.000000 -3.0 3.000000 9.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 12.970000 4.006000 4.179000 7.845000 7.997000 8.863000 8.851000 9.440000 9.003000 1.864000 0.000000 4.677000 10.263000 25.749000 15.585000 10.271000 7.070000 7.050000 6.940000 7.238000 6.841000 8.141000 8.811000 7.770000 7.608000 7.915000 7.962000 5.092000 5.167000 6.806000 6.861000 6.422000 8.626000 7.242000 5.965000 6.223000 6.109000 5.897000 6.455000 6.095000 5.962000 5.653000 6.048000 6.179000 5.747000 5.822000 5.906000 6.060000 6.499000 9.921000 6.446000 4.792000 8.15900 9.382000 6.428000 4.955000 8.820000 13.771000 9.288000 11.001000 0.000000 0.000000 6.502000 6.541000 5.557000 4.281000 3.875000 7.407000 5.921000 4.520000 4.234000 46.174000 11.196000 9.378000 7.003000 13.148000 10.218000 13.525000 14.150000 16.557000 17.284000 14.588000 15.548000 13.520000 13.264000 10.595000 10.460000 14.702000 20.942000 26.777000 30.162000 12.255000 15.662000 14.434000 23.128000 6.458000 6.884000 67.336000 21.600000 10.610000 6.701000 9.012000 6.832000 16.285000 12.223000 9.700000 10.629000 11.728000 9.856000 23.400000 11.603000 7.415000 13.529000 14.551000 15.814000 17.600000 15.071000 10.675000 12.492000 8.421000 10.345000 10.159000 10.391000 12.460000 12.426000 7.528000 9.232000 10.277000 8.489000 9.642000 8.386000 9.426000 7.290000 7.899000 17.726000 12.893000 8.352000 10.207000 9.109000 10.534000 13.722000 13.007000 12.360000 11.725000 6.266000 28.775000 24.665000 14.010000 18.452000 23.318000 7.680000 0.000000 0.000000 0.000000 0.000000 6.706000 6.509000 9.021000 0.000000 0.000000 0.000000 8.307000 7.172000 46.409000 4.974000 6.086000 8.155000 11.544000 8.196000 19.915000 3.649000 0.000000 5.569000 6.046000 0.000000 12.621000 4.865000 0.000000 0.000000 3.268000 0.000000 0.000000 25.601000 24.335000 15.722000 16.944000 15.299000 11.298000 11.079000 6.101000 7.553000 6.517000 3.716000 3.698000 2.952000 3.350000 3.077000 2.175000 0.000000 0.000000 0.000000 5.991000 5.583000 4.329000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8.948000 10.826000 11.297000 5.255000 7.586000 15.388000 8.509000 5.366000 5.120000 4.491000 8.406000 1.0 2.0 6.000000 6.000000 6.000000 6.000000 6.000000 11.000000 11.000000 11.000000 11.000000 11.000000 14.000000 14.000000 15.0 19.000000 18.000000 18.000000 19.000000 31.000000 31.000000 31.000000 31.000000 31.000000 31.000000 31.000000 31.000000 31.000000 31.000000 31.000000 31.000000 31.000000 31.000000 31.000000 3.000000 3.000000 3.000000 1.0 3.000000 3.000000 3.000000 3.000000 3.000000 4.0 5.0 6.0 2.000000 2.000000 3.000000 3.000000 4.000000 4.000000 0.0 1.000000 2977.000000
max 3165.000000 2.000000 4.000000 3.000000 4.000000 4.000000 4.000000 5.000000 4.000000 5.000000 3.000000 2.000000 2.000000 2.00000 3.000000 3.000000 2.000000 2.000000 2.000000 2.00000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 997.000000 997.000000 997.000000 997.000000 997.000000 997.000000 997.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 997.000000 997.000000 997.000000 997.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.00000 3.000000 9.000000 4.000000 4.000000 4.000000 4.000000 4.000000 5.000000 4.000000 2.000000 2.000000 4.000000 4.000000 3.000000 2.000000 2.000000 2.000000 5.000000 5.000000 5.000000 5.000000 7.000000 7.000000 7.000000 7.000000 5.000000 5.000000 5.000000 7.000000 5.000000 5.000000 5.000000 5.000000 5.000000 7.000000 7.000000 5.000000 5.000000 5.000000 5.000000 5.000000 7.000000 7.000000 7.000000 7.000000 5.000000 5.000000 5.000000 5.000000 7.000000 7.000000 3.000000 2.000000 3.000000 3.000000 5.000000 7.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 7.000000 5.000000 5.00000 7.000000 7.000000 7.000000 5.000000 7.000000 5.000000 7.000000 5.000000 5.000000 2.000000 5.000000 7.000000 7.000000 7.000000 7.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 2.000000 5.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 5.000000 2.000000 5.000000 2.000000 5.000000 2.000000 2.000000 5.000000 2.000000 2.000000 5.000000 2.000000 5.000000 2.000000 7.000000 7.000000 1.000000 1.000000 99.000000 4.000000 2018.000000 2.000000 7.000000 4.000000 4.000000 2.000000 3.000000 999.000000 5.000000 3.000000 2019.000000 2.000000 2.00000 2.000000 2.000000 2.000000 2.000000 2.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 2.000000 9.000000 11.500000 999.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 3.000000 5.000000 12.000000 3.000000 2.000000 5.000000 2.000000 4.000000 2.000000 4.000000 3.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 5.000000 5.000000 5.000000 6.000000 6.000000 3.000000 3.000000 5.000000 5.000000 5.000000 5.000000 5.000000 2.000000 2000.000000 2.000000 6.000000 6.000000 2.000000 8.000000 9.000000 97.000000 3.000000 6.000000 8.000000 7.000000 7.000000 2.000000 4.000000 7.000000 8.000000 12.000000 90.000000 56.000000 -3.0 4.000000 9.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000 1.000000 3329.142000 283.030000 3716.698000 4510.024000 5353.798000 294.913000 1612.191000 4173.815000 3979.179000 17243.753000 212.733000 1329.599000 20128.321000 4797.269000 2161.685000 474.717000 300.425000 4478.240000 256.690000 10614.993000 505.686000 5286.402000 907.872000 8316.339000 193.480000 2832.327000 432.521000 308.329000 762.215000 816.590000 2022.514000 1170.860000 14131.280000 756.190000 1284.965000 174.731000 1107.227000 4204.543000 283.518000 1678.225000 244.462000 587.067000 2853.474000 3496.967000 302.005000 208.710000 2165.035000 13528.502000 565.111000 1000.423000 11443.881000 221.362000 817.92500 2166.168000 1324.991000 2755.001000 394.123000 1640.298000 1294.523000 5033.181000 19.199000 107.309000 509.857000 516.104000 277.502000 340.382000 167.083000 5113.233000 1571.900000 419.809000 652.383000 3572.141000 3697.854000 10871.468000 2361.832000 40511.681000 1619.251000 1930.682000 1440.703000 409.381000 1051.996000 4116.227000 518.480000 4046.200000 1814.829000 1659.970000 1734.092000 1587.520000 50514.468000 429.053000 7444.931000 589.019000 1347.613000 13738.832000 658.068000 273.400000 24606.442000 55770.827000 8411.571000 7600.416000 4391.346000 601.745000 6182.909000 3900.135000 4658.247000 227.618000 366.238000 716.259000 5675.307000 11441.165000 168563.584000 384.680000 3402.048000 54876.037000 2508.591000 48464.985000 1108.529000 1190.970000 22251.219000 2800.366000 1211.201000 1530.032000 2238.145000 5893.071000 522.649000 1460.527000 1826.907000 5556.395000 2308.030000 444.203000 670.029000 5189.545000 667.093000 3986.526000 1367.509000 5985.957000 329.162000 709.513000 115.925000 529.633000 2360.807000 1848.990000 5081.053000 5628.526000 780.263000 163485.708000 1274.305000 1052.558000 531.474000 700.991000 5431.972000 288.646000 25.872000 31.343000 110.287000 177.980000 355.788000 814.179000 38.299000 75.818000 98.169000 152.853000 310.773000 2610.304000 300.601000 460.057000 667.837000 626.714000 346.873000 4418.358000 86.403000 684.437000 716.407000 377.896000 85.989000 1856.375000 3398.365000 36.171000 902.372000 700.214000 73.700000 184.015000 3517.603000 1235.324000 618.634000 4620.500000 576.556000 1170.608000 6213.150000 12914.558000 649.053000 355.542000 220.059000 1041.387000 2340.553000 205.250000 824.052000 82.856000 23442.337000 159.664000 220.371000 683.150000 533.287000 442.793000 280.159000 357.771000 84.795000 23.890000 34.589000 44.077000 980.717000 892.568000 1804.309000 100.479000 8120.092000 5315.118000 662.626000 127.858000 80.219000 1193.837000 146.586000 1.0 2.0 7.000000 7.000000 7.000000 7.000000 7.000000 12.000000 12.000000 12.000000 12.000000 12.000000 14.000000 14.000000 15.0 19.000000 19.000000 19.000000 19.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 3.000000 3.000000 3.000000 1.0 3.000000 3.000000 3.000000 3.000000 3.000000 4.0 5.0 6.0 2.000000 2.000000 4.000000 4.000000 4.000000 4.000000 0.0 1.000000 489139.000000

To change the quantiles that are displayed, use the percentiles argument, set equal to a list of the desired quantiles. To see the 33rd and 67th quantiles, type

anes.describe(percentiles = [.33, .67])
caseid form follow reg1a reg1b liveurban youthurban placeid1a placeid1b placeidimport turnout16a turnout16a1 turnout16b turnout16c vote16 turnout18a turnout18a1 particip_1 particip_2 particip_3 particip_4 particip_5 particip_6 particip_7 particip_8 particip_9 fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales vote20dem vote20cand vote20cand2 electable vote20jb vote20ew vote20bs cvote2020 tsplit1 contact1a contact1b contact2a contact2b contact3 contact4m_1 contact4m_2 contact4m_3 apppres5 frnpres5 immpres5 econpres5 apppres7 frnpres7 immpres7 econpres7 econnow finworry confecon improve1 national1 national2 conspire1 conspire2 conspire3 taxecon billtax trade1 trade2 trade3 trade4 richpoor2 guarinc lcself lcd lcr pop1 pop2 pop3 corrupt immignum refugees dreamstr dreamer dreamstr1 dreamstr2 wall5 wall7 pathway preturn popen release1 release2 famsep tchina trussia tiran tmexico tjapan hlthcare1 hlthcare2 abortion1 abortion2 freecol loans diversity5 diversity7 language buyback gw1 gw2 knowopioid1 knowopioid2 opioiddo sentence prek demo4 experts science exphelp elite1 elite2 elite3 elite4 ukraine1 ukraine2 excessive rural1alt1 rural1alt2 rural2alt1 rural2alt2 rural3alt1 rural3alt2 rural4alt1 rural4alt2 conf_unemp unemp conf_interfere interfere conf_autism autism1 autism2 conf_gmo gmo1 gmo2 conf_warm warm conf_illegal illegal impeach1 impeach2 pk_cjus_correct pk_germ_correct pk_sen pk_spend pk_geer cheat pid7x pid1d pid1r pidstr pidlean ngun shooting dem_activduty milyears milyr1 milyr2 milyr3 milyr4 milyr5 milyr6 combat harass1a harass1b rr1 rr2 rr3 rr4 health1a health1b hospital feet inches nweight disable1 disable2 disable3 disable4 disable5 disable6 smoker1 smoker2 exercise relig1a relig2a att1 att2 att3 relig1b relig2b relig3b attother exptravel_ever exphomesch expfarm expffood expconvert expholiday explie expshark expdivorce exparrest expoverdose expdefault exppubasst exphybrid expmistake explightning exptravel_year expindian exphunt expflag exppublib explottery expshoponline exppubtrans expfight expavoid expknowimmig expknowtrans expbuyusa expretire expcolldebt expknowpris socmed_1 socmed_2 socmed_3 socmed_4 socmed_5 socmed_6 socmed_7 socmed_8 socmed_9 facebook1 facebook2 facebook3 twitter1 twitter2 twitter3 instagram1 instagram2 instagram3 reddit1 reddit2 reddit3 youtube1 youtube2 youtube3 snapchat1 snapchat2 snapchat3 tiktok1 tiktok2 tiktok3 raceid racework whitejob race_sub1 race_sub2 voterid1 voterid2 serious photo1 photo2 photo3 photo4 reinterview birthyr gender educ marstat child18 race employ faminc_new votereg ideo5 pid7 newsint presvote16post pew_bornagain pew_religimp pew_churatd pew_prayer religpew religpew_protestant inputstate zipCode region qualityControl_overall_scale abortion1_skp abortion2_skp apppres5_skp apppres7_skp att1_skp att2_skp att3_skp attother_skp autism1_skp autism2_skp billtax_skp buyback_skp cexp1_grid_skp cexp2_grid_skp cheat_skp combat_skp confecon_skp conspire1_skp conspire2_skp conspire3_skp contact1a_skp contact1b_skp contact2a_skp contact2b_skp contact3_skp corrupt_skp cvote2020_skp dem_activduty_skp demo4_skp disable_grid_skp diversity5_skp diversity7_skp dreamer_skp econnow_skp econpres5_skp econpres7_skp electable_skp elite1_skp elite2_skp elite3_skp elite4_skp excessive_skp exercise_skp exp1_grid_skp exp2_grid_skp experts_skp exphelp_skp facebook1_skp facebook2_skp facebook3_skp finworry_skp follow_skp freecol_skp frnpres5_skp frnpres7_skp ftasian_skp ftbiden_skp ftblack_skp ftbritain_skp ftbuttigieg_skp ftcanada_skp ftchina_skp ftfrance_skp ftgermany_skp ftharris_skp fthisp_skp ftice_skp ftillegal_skp ftimmig1_skp ftimmig2_skp ftiran_skp ftisrael_skp ftjapan_skp ftjournal_skp ftmexico_skp ftmuslim_skp ftnato_skp ftnkorea_skp ftnra_skp ftobama_skp ftpales_skp ftrussia_skp ftsanders_skp ftsaudi_skp fttrump_skp ftturkey_skp ftukraine_skp ftun_skp ftwarren_skp ftwhite_skp gmo1_skp gmo2_skp guarinc_skp gw_grid_skp harass1a_skp harass1b_skp health1a_skp health1b_skp hlthcare1_skp hlthcare2_skp hospital_skp illegal_skp immignum_skp immpres5_skp immpres7_skp impeach1_skp impeach2_skp improve1_skp instagram1_skp instagram2_skp instagram3_skp interfere_skp knowopioid1_skp knowopioid2_skp language_skp lc_grid_skp liveurban_skp loans_skp milyears_skp milyr_skp mip_skp national1_skp national2_skp ngun_skp opioiddo_skp particip_skp path_grid_skp pid1d_skp pid1r_skp pidlean_skp pidstr_skp pk_cjus_skp pk_geer_skp pk_germ_skp pk_sen_skp pk_spend_skp placeid1a_skp placeid1b_skp placeidimport_skp pop_grid_skp prek_skp raceid_skp racework_skp reddit1_skp reddit2_skp reddit3_skp refugees_skp reg1a_skp reg1b_skp reinterivew_skp relig1a_skp relig1b_skp relig2a_skp relig2b_skp relig3b_skp rexp1_grid_skp rexp2_grid_skp richpoor2_skp rr_grid_skp rural1alt1_skp rural1alt2_skp rural2alt1_skp rural2alt2_skp rural3alt1_skp rural4alt1_skp rural4alt2_skp science_skp sentence_skp serious_skp shooting_skp smoker1_skp smoker2_skp snapchat1_skp snapchat2_skp snapchat3_skp socmed_skp tall_skp taxecon_skp threat_grid_skp tiktok1_skp tiktok2_skp tiktok3_skp trade1_skp trade2_skp trade3_skp trade4_skp tsplit1_skp turnout16a_skp turnout16b_skp turnout16c_skp turnout18a_skp twitter1_skp twitter2_skp twitter3_skp ukraine1_skp ukraine2_skp unemp_skp vote16_skp vote20bs_skp vote20cand2_skp vote20cand_skp vote20dem_skp vote20ew_skp vote20jb_skp voterid1_skp voterid2_skp wall7_skp wall5_skp warm_skp nweight_skp whitejob_skp youthurban_skp youtube1_skp youtube2_skp youtube3_skp rural3alt2_skp follow_page_timing reg1a_page_timing reg1b_page_timing liveurban_page_timing youthurban_page_timing placeid1a_page_timing placeid1b_page_timing placeidimport_page_timing turnout16a_page_timing turnout16b_page_timing turnout16c_page_timing vote16_page_timing turnout18a_page_timing particip_page_timing fttrump_page_timing ftobama_page_timing ftbiden_page_timing ftwarren_page_timing ftsanders_page_timing ftbuttigieg_page_timing ftharris_page_timing ftblack_page_timing ftwhite_page_timing fthisp_page_timing ftasian_page_timing ftmuslim_page_timing ftillegal_page_timing ftimmig1_page_timing ftimmig2_page_timing ftjournal_page_timing ftnato_page_timing ftun_page_timing ftice_page_timing ftnra_page_timing ftchina_page_timing ftnkorea_page_timing ftmexico_page_timing ftsaudi_page_timing ftukraine_page_timing ftiran_page_timing ftbritain_page_timing ftgermany_page_timing ftjapan_page_timing ftisrael_page_timing ftfrance_page_timing ftcanada_page_timing ftturkey_page_timing ftrussia_page_timing ftpales_page_timing vote20dem_page_timing vote20cand_page_timing vote20cand2_page_timing electable_page_timing vote20jb_page_timing vote20ew_page_timing vote20bs_page_timing cvote2020_page_timing tsplit1_page_timing contact1a_page_timing contact1b_page_timing contact2a_page_timing contact2b_page_timing contact3_page_timing apppres5_page_timing frnpres5_page_timing immpres5_page_timing econpres5_page_timing apppres7_page_timing frnpres7_page_timing immpres7_page_timing econpres7_page_timing mip_page_timing econnow_page_timing finworry_page_timing confecon_page_timing improve1_page_timing national1_page_timing national2_page_timing conspire1_page_timing conspire2_page_timing conspire3_page_timing taxecon_page_timing billtax_page_timing trade1_page_timing trade2_page_timing trade3_page_timing trade4_page_timing richpoor2_page_timing guarinc_page_timing lc_grid_page_timing pop_grid_page_timing corrupt_page_timing immignum_page_timing refugees_page_timing dreamer_page_timing wall_page_timing wall7_page_timing path_grid_page_timing threat_grid_page_timing hlthcare1_page_timing hlthcare2_page_timing abortion1_page_timing abortion2_page_timing freecol_page_timing loans_page_timing diversity5_page_timing diversity7_page_timing language_page_timing buyback_page_timing gw_grid_page_timing knowopioid1_page_timing knowopioid2_page_timing opioiddo_page_timing sentence_page_timing prek_page_timing demo4_page_timing experts_page_timing science_page_timing exphelp_page_timing elite1_page_timing elite2_page_timing elite3_page_timing elite4_page_timing ukraine1_page_timing ukraine2_page_timing excessive_page_timing rural1alt1_page_timing rural1alt2_page_timing rural2alt1_page_timing rural2alt2_page_timing rural3alt1_page_timing rural3alt2_page_timing rural4alt1_page_timing rural4alt2_page_timing unemp_page_timing interfere_page_timing autism1_page_timing autism2_page_timing gmo1_page_timing gmo2_page_timing warm_page_timing illegal_page_timing impeach1_page_timing impeach2_page_timing pk2_intro_page_timing pk_cjus_page_timing pk_germ_page_timing pk_sen_page_timing pk_spend_page_timing pk_geer_page_timing cheat_page_timing pid1d_page_timing pid1r_page_timing pidstr_page_timing pidlean_page_timing ngun_page_timing shooting_page_timing dem_activduty_page_timing milyears_page_timing milyr_page_timing combat_page_timing harass1a_page_timing harass1b_page_timing rr_grid_page_timing health1a_page_timing health1b_page_timing hospital_page_timing tall_page_timing nweight_page_timing disable_grid_page_timing smoker1_page_timing smoker2_page_timing exercise_page_timing relig1a_page_timing relig2a_page_timing att1_page_timing att2_page_timing att3_page_timing relig1b_page_timing relig2b_page_timing relig3b_page_timing attother_page_timing exp1_grid_page_timing exp2_grid_page_timing rexp1_grid_page_timing rexp2_grid_page_timing cexp1_grid_page_timing cexp2_grid_page_timing socmed_page_timing facebook1_page_timing facebook2_page_timing facebook3_page_timing twitter1_page_timing twitter2_page_timing twitter3_page_timing instagram1_page_timing instagram2_page_timing instagram3_page_timing reddit1_page_timing reddit2_page_timing reddit3_page_timing youtube1_page_timing youtube2_page_timing youtube3_page_timing snapchat1_page_timing snapchat2_page_timing snapchat3_page_timing tiktok1_page_timing tiktok2_page_timing tiktok3_page_timing raceid_page_timing racework_page_timing whitejob_page_timing voterid1_page_timing voterid2_page_timing serious_page_timing photo1_page_timing photo2_page_timing photo3_page_timing photo4_page_timing reinterview_page_timing ord_fttrump ord_ftobama ord_ftbiden ord_ftwarren ord_ftsanders ord_ftbuttigieg ord_ftharris ord_ftblack ord_ftwhite ord_fthisp ord_ftasian ord_ftmuslim ord_ftimmig1 ord_ftimmig2 ord_ftjournal ord_ftnato ord_ftun ord_ftice ord_ftnra ord_ftchina ord_ftnkorea ord_ftmexico ord_ftsaudi ord_ftukraine ord_ftiran ord_ftbritain ord_ftgermany ord_ftjapan ord_ftisrael ord_ftfrance ord_ftcanada ord_ftturkey ord_ftrussia ord_ftpales ord_conspire1 ord_conspire2 ord_conspire3 ord_lcself ord_lcd ord_lcr ord_pathway ord_preturn ord_popen ord_release1 ord_release2 ord_famsep ord_gw1 ord_gw2 ord_elite1 ord_elite2 ord_elite3 ord_elite4 ord_lc_reverse ord_att2_reverse duration
count 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.00000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.0 3165.0 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.000000 3165.0 3165.000000 3165.000000
mean 1583.000000 1.498894 1.672038 0.117220 0.140284 2.665403 2.641390 0.699842 0.740284 2.357662 0.111216 -0.974408 -0.429068 -0.46951 1.146603 1.318799 -0.875197 1.880885 1.802528 1.93049 1.659716 1.790205 1.869510 1.812322 1.663191 1.572828 49.350711 57.589573 56.269194 78.185150 55.091311 124.552923 95.901738 70.738073 70.762717 68.907425 69.159242 51.828120 42.086888 33.718167 35.901422 49.866667 96.762717 70.290995 69.216430 63.884992 37.933965 20.754818 53.505845 32.030648 48.959874 26.515640 69.140284 60.447077 64.789889 59.599052 58.558610 72.419589 37.601264 31.415166 39.97030 1.743760 1.376303 0.117852 0.232859 1.878041 1.882148 1.862559 1.989889 2.216430 0.402212 0.417062 -0.706793 -0.783886 0.496367 -0.911216 -0.896051 -0.890679 1.093523 1.101738 1.073618 0.900790 1.723855 1.717852 1.691943 1.430648 2.547235 2.394945 2.545024 4.408531 2.426224 3.007583 3.175671 2.932070 3.010742 3.770616 3.777883 2.112480 2.911216 2.533017 2.250553 2.906161 4.480885 4.109321 2.310269 5.544708 2.213902 2.040126 3.823697 3.617378 4.011058 3.407583 1.587678 1.666983 -0.321643 0.848025 0.993365 1.559558 2.402528 2.712480 3.378831 3.442338 3.149131 3.816114 1.213270 1.336809 1.291627 0.618957 0.370300 1.535861 0.860348 0.87267 1.687520 4.393681 4.454660 0.721011 1.154818 2.242022 1.506477 2.475513 2.327962 1.604423 0.674882 2.706793 1.153555 3.622749 4.952923 3.009479 3.272354 3.230016 2.983886 3.503002 1.792733 3.063823 3.668562 1.306477 0.958610 1.056872 1.167457 1.772196 1.696682 1.770616 1.747235 1.854344 1.903318 3.534913 1.764929 3.880253 1.248025 3.804423 0.400948 0.400000 3.306477 0.248025 0.181043 3.779463 1.249605 3.616430 1.637599 3.950079 3.956082 0.465403 0.610742 5.828120 2.326698 1671.986414 1.838863 3.481517 0.495419 0.450237 0.340600 0.194945 1.831596 0.528910 2.835703 17.943128 -0.575671 -0.58357 -0.633175 -0.635387 -0.607899 -0.593997 -0.599368 0.839810 0.786098 2.560506 2.957030 3.135861 2.998420 1.109321 0.971248 0.340600 5.071090 5.406975 183.066035 0.412006 0.450553 0.423065 0.404423 0.452449 0.428436 0.274882 -0.245182 1.002844 2.697630 -0.556714 1.592733 0.351975 -0.642970 -0.415482 -0.206319 -0.610111 -0.542496 0.152291 0.461295 0.332070 0.327962 0.402528 0.257820 0.037915 0.485308 0.334913 0.377567 0.326698 0.395261 0.313744 0.448973 0.020221 0.472354 0.310585 0.328910 0.300790 0.254028 0.212322 0.178831 0.036967 0.233491 0.385782 0.278673 0.144392 0.337757 0.182306 0.215482 0.408531 0.372196 1.198736 1.597472 1.602844 1.826856 1.284676 1.827488 1.947235 1.974724 1.922907 1.943760 2.068246 3.043602 1.055608 0.533017 1.028436 0.919115 1.024329 1.206951 -0.035071 -0.190521 -0.049605 2.404107 2.520695 3.040126 -0.126066 -0.071406 -0.037599 -0.690047 -0.715008 -0.701106 2.556398 2.773460 2.273302 1.416114 1.416114 0.342496 0.344392 4.567773 0.286572 0.253081 0.207583 0.218641 1.054344 1967.966509 1.516272 3.496367 2.636651 1.791469 1.667615 3.492575 18.533333 1.156082 3.388310 4.031596 1.925118 3.222433 1.705845 2.248341 4.283096 3.931122 5.137125 0.030016 28.057820 -3.0 2.682464 7.612006 0.001264 0.001896 0.001896 0.001264 0.002528 0.000948 0.0 0.000316 0.005371 0.012954 0.002844 0.000316 0.005687 0.006635 0.007267 0.001580 0.003476 0.006635 0.003476 0.004107 0.001264 0.003791 0.000316 0.000632 0.001264 0.005687 0.001580 0.003791 0.005687 0.016114 0.000948 0.000948 0.036019 0.003476 0.002844 0.004739 0.000316 0.005371 0.007267 0.006319 0.004423 0.000632 0.000632 0.013586 0.015166 0.003791 0.004423 0.000316 0.002212 0.006319 0.001896 0.001580 0.000948 0.004107 0.005055 0.012954 0.015798 0.005687 0.005055 0.033807 0.002528 0.006635 0.004107 0.004423 0.027172 0.008215 0.009795 0.007583 0.007267 0.009479 0.008847 0.006951 0.00316 0.006951 0.004107 0.012322 0.009795 0.008531 0.016746 0.042338 0.012638 0.005371 0.018641 0.007899 0.098578 0.009163 0.010427 0.007899 0.021485 0.008215 0.006003 0.012638 0.000316 0.006003 0.002528 0.000948 0.000316 0.000316 0.000948 0.001264 0.0 0.014534 0.003476 0.001580 0.002528 0.002212 0.007583 0.002212 0.001580 0.002212 0.004107 0.022433 0.011374 0.000948 0.001264 0.023697 0.00316 0.008847 0.000316 0.000316 0.072038 0.001896 0.001264 0.0 0.004107 0.004739 0.020221 0.000316 0.0 0.000632 0.000316 0.090047 0.211374 0.051185 0.029068 0.007583 0.000316 0.001580 0.004107 0.015798 0.006003 0.006635 0.008215 0.000948 0.000948 0.001580 0.007267 0.001580 0.000948 0.004423 0.002844 0.000632 0.000316 0.001580 0.0 0.009479 0.009479 0.005687 0.012954 0.001580 0.000948 0.007267 0.004107 0.002212 0.002844 0.005371 0.005687 0.000632 0.002212 0.0 0.001896 0.000632 0.000632 0.000948 0.001580 0.002212 0.012954 0.005371 0.010427 0.000316 0.000316 0.000948 0.000632 0.011690 0.014218 0.003791 0.004107 0.001264 0.000632 0.000632 0.003476 0.001264 0.001580 0.002844 0.004739 0.016746 0.024961 0.001896 0.006319 0.003791 0.001264 0.003476 0.006635 0.005371 0.000948 0.001264 0.001264 0.000948 0.014218 0.018325 0.006003 0.005687 0.000948 0.00316 0.005687 0.002528 16.249831 2.851289 4.758153 9.947926 9.746972 5.948907 6.459573 10.551217 7.434285 7.914338 3.746515 4.370908 16.349738 26.844717 14.821811 9.187120 6.666985 9.203342 6.349779 10.455729 6.368160 8.764240 8.407842 9.570333 6.737906 7.946085 7.463983 3.537166 3.961809 6.674058 8.099450 6.692616 13.294170 7.196664 6.297405 5.605068 6.167858 8.368036 5.799524 6.397577 5.627565 5.504396 7.314327 7.127235 5.342872 5.601698 7.028444 10.067284 6.142951 9.488965 8.053627 2.994213 5.99733 10.199777 6.486621 6.119887 7.631131 11.593834 6.120466 8.947167 0.397838 0.472865 4.374793 4.534931 3.620925 2.905165 2.821052 6.751886 4.862747 3.070789 3.232060 48.462781 14.782748 12.893939 7.614476 26.695615 11.381638 14.058791 13.468457 14.334284 16.524850 17.648784 14.067368 14.669283 12.939733 11.314433 11.419157 14.676886 34.775299 22.727071 31.546775 12.257626 16.569494 20.682562 20.941951 4.080805 16.403611 83.353785 18.758895 11.695224 6.509795 6.051318 7.318181 16.792928 15.692625 6.401828 7.377582 10.994774 9.668506 28.472640 63.464335 4.374284 14.293756 28.085451 15.632500 31.944563 13.800104 10.805658 18.735078 9.756997 9.406772 10.210200 11.382238 13.971114 10.983584 5.463366 7.046347 9.188105 6.174507 6.588835 5.950917 8.755212 5.610690 7.194316 16.579748 15.251651 4.975384 6.640365 5.351997 6.936025 15.165952 12.869905 13.785718 13.804272 5.174459 76.840578 21.269621 14.060265 17.778390 20.862071 8.696251 0.627698 0.474750 0.389372 0.341393 4.223396 4.235764 8.487581 0.113170 1.547438 0.962805 5.052195 4.617948 44.516415 3.460289 3.956396 5.144718 11.258700 7.711925 14.459429 2.299373 1.370671 3.840478 5.087858 0.797151 12.819019 3.932843 0.980799 2.208268 2.328449 0.906647 2.492929 16.092442 14.840867 9.559169 12.830056 9.584312 7.607143 12.263852 9.575728 6.777868 5.412755 2.243678 2.985571 2.739002 2.054936 2.432392 1.481347 8.649955 0.766930 0.623996 4.825806 4.369771 3.329777 0.882941 0.742097 0.523940 0.207807 0.163375 0.130342 8.343833 10.489896 11.550905 3.259258 7.736379 18.957856 5.420974 3.359211 3.170164 3.117318 7.152483 1.0 2.0 5.006319 4.959558 4.985466 5.012322 5.036335 10.013270 10.008847 10.000000 10.000000 9.977883 7.015482 6.984518 15.0 17.534281 17.490679 17.454976 17.520063 26.947235 27.053081 27.027488 27.082148 27.173144 27.053397 26.917536 26.979147 27.073934 26.939021 27.024329 26.875829 27.012006 27.012954 26.828752 1.992101 1.995577 2.012322 1.0 2.503633 2.496367 2.002844 2.023381 1.973776 4.0 5.0 6.0 1.512480 1.487520 2.488784 2.515640 2.496367 2.499210 0.0 0.506161 8663.017694
std 913.801127 0.500078 0.926089 1.195428 1.247464 1.070029 1.096192 1.880001 1.906350 1.306302 1.158824 0.364741 0.980422 0.96956 1.202344 0.576437 0.632481 0.323975 0.398155 0.25436 0.473880 0.407226 0.336895 0.390516 0.472694 0.494746 84.472485 73.002606 120.196311 189.367529 115.863403 276.040047 235.892477 23.964258 23.046131 24.333374 23.753420 29.722614 32.037712 39.488803 40.827825 31.566846 196.277400 138.611353 129.933928 134.687957 24.924698 23.160735 26.513570 24.203703 24.480570 24.801873 23.691241 24.822482 23.868048 29.137909 25.092663 23.950280 23.866562 24.985195 27.53408 0.785695 3.227412 1.503372 1.482449 0.920157 0.930424 0.906015 1.224961 1.039782 1.427890 1.443793 0.919295 0.791903 1.525718 0.454661 0.528816 0.552598 2.426304 2.430919 2.417922 2.236128 3.242645 3.232316 3.232296 2.951463 1.190750 1.230450 1.217087 1.984036 1.256340 1.196790 1.138945 1.037598 1.288336 1.992199 2.186822 0.958025 1.095626 1.004384 0.961705 1.513856 2.134250 2.006010 1.486062 1.611915 1.110544 1.038133 1.146316 1.005617 1.695779 1.905662 0.799201 0.850188 1.295056 1.470947 2.365528 3.122146 1.480934 1.557206 1.599698 1.574602 1.511817 1.503996 2.386954 2.495949 2.457080 1.827282 1.565067 3.014146 2.102935 2.04003 3.125481 2.265519 2.253859 1.940376 2.475170 1.413388 3.017706 1.471103 1.340742 0.489051 2.287246 1.601586 2.532555 2.135247 1.934449 1.166553 1.239014 1.087009 1.235559 1.157237 0.965923 1.362203 1.450328 0.857907 2.086891 2.224431 2.340165 2.908679 2.856271 2.967346 2.953912 3.000624 3.058243 1.352924 0.620221 1.269303 0.607137 1.309541 1.473984 1.508258 1.218110 1.303537 1.338110 1.222687 0.548764 1.302573 0.642797 2.628259 2.633112 0.445501 0.487659 6.347812 1.355817 671.902905 0.425120 2.961733 1.682924 1.681818 1.184448 1.620499 39.321173 1.715605 0.429832 193.708767 1.042572 1.02669 0.919159 0.914008 0.975749 1.005246 0.965917 1.986028 1.891677 1.459922 1.511874 1.461211 1.461797 2.164109 2.155637 1.383124 0.984232 3.517829 63.705234 1.486639 1.514105 1.494672 1.488721 1.515417 1.498529 1.325245 1.471359 2.214977 4.999799 1.239248 0.514036 1.845648 0.868132 1.307694 1.226328 1.119147 0.977874 1.213675 1.486827 1.387591 1.384122 1.443979 1.321515 1.083646 1.503322 1.419009 1.460803 1.420256 1.466496 1.409451 1.490277 1.076221 1.514034 1.360878 1.376685 1.343812 1.317940 1.259266 1.265958 1.109190 1.329245 1.451487 1.370888 1.195363 1.384164 1.255306 1.294382 1.460908 1.433035 0.399112 0.490485 0.489386 0.378431 0.451331 0.377884 0.223599 0.156988 0.266781 2.140158 1.957453 2.295352 2.848149 2.088270 2.609150 2.721554 2.595528 2.787311 2.291847 1.878594 2.135665 2.678055 2.445997 2.663485 2.119435 2.085549 2.149187 1.401072 1.230273 1.283618 1.621324 1.725155 1.281567 1.025432 1.025432 1.449828 1.475957 1.010175 1.453350 1.376188 1.321396 1.412950 0.272329 17.149547 0.499814 1.492629 1.867967 0.406322 1.272128 2.409492 31.326407 0.426262 1.464257 2.277164 1.451628 2.487606 0.480051 1.185511 1.755823 2.502905 4.504054 15.766871 15.948919 0.0 1.026802 2.499655 0.035533 0.043506 0.043506 0.035533 0.050220 0.030778 0.0 0.017775 0.073103 0.113095 0.053258 0.017775 0.075211 0.081198 0.084950 0.039721 0.058860 0.081198 0.058860 0.063968 0.035533 0.061468 0.017775 0.025134 0.035533 0.075211 0.039721 0.061468 0.075211 0.125933 0.030778 0.030778 0.186367 0.058860 0.053258 0.068690 0.017775 0.073103 0.084950 0.079254 0.066372 0.025134 0.025134 0.115783 0.122232 0.061468 0.066372 0.017775 0.046984 0.079254 0.043506 0.039721 0.030778 0.063968 0.070932 0.113095 0.124712 0.075211 0.070932 0.180761 0.050220 0.081198 0.063968 0.066372 0.162611 0.090277 0.098498 0.086763 0.084950 0.096911 0.093655 0.083096 0.05613 0.083096 0.063968 0.110337 0.098498 0.091982 0.128337 0.201391 0.111725 0.073103 0.135276 0.088538 0.298142 0.095298 0.101593 0.088538 0.145017 0.090277 0.077259 0.111725 0.017775 0.077259 0.050220 0.030778 0.017775 0.017775 0.030778 0.035533 0.0 0.119697 0.058860 0.039721 0.050220 0.046984 0.086763 0.046984 0.039721 0.046984 0.063968 0.148110 0.106059 0.030778 0.035533 0.152126 0.05613 0.093655 0.017775 0.017775 0.258592 0.043506 0.035533 0.0 0.063968 0.068690 0.140778 0.017775 0.0 0.025134 0.017775 0.286295 0.408348 0.220409 0.168024 0.086763 0.017775 0.039721 0.063968 0.124712 0.077259 0.081198 0.090277 0.030778 0.030778 0.039721 0.084950 0.039721 0.030778 0.066372 0.053258 0.025134 0.017775 0.039721 0.0 0.096911 0.096911 0.075211 0.113095 0.039721 0.030778 0.084950 0.063968 0.046984 0.053258 0.073103 0.075211 0.025134 0.046984 0.0 0.043506 0.025134 0.025134 0.030778 0.039721 0.046984 0.113095 0.073103 0.101593 0.017775 0.017775 0.030778 0.025134 0.107505 0.118407 0.061468 0.063968 0.035533 0.025134 0.025134 0.058860 0.035533 0.039721 0.053258 0.068690 0.128337 0.156029 0.043506 0.079254 0.061468 0.035533 0.058860 0.081198 0.073103 0.030778 0.035533 0.035533 0.030778 0.118407 0.134147 0.077259 0.075211 0.030778 0.05613 0.075211 0.050220 91.689491 8.013374 75.269861 89.293214 98.002761 13.326773 31.622833 77.918708 74.763266 306.564583 11.010138 25.512346 358.175432 123.517520 56.211355 13.970517 10.154124 97.829508 8.604871 189.550416 11.777612 94.479839 26.059846 147.990913 7.492682 51.463324 14.962254 9.763798 18.387004 19.348970 48.523896 25.024014 254.182999 20.081360 25.769919 6.804976 25.557934 87.159584 8.803043 31.211370 8.772881 14.073176 60.280534 63.342451 8.978854 8.979428 51.363497 240.697989 13.561271 26.876109 203.621035 7.233232 22.61214 52.163298 30.063915 56.660079 12.409541 33.913834 26.821527 91.273237 1.411344 2.944575 12.159694 14.317243 9.163497 9.957565 7.366386 91.724847 37.105394 9.114192 16.300898 107.099793 92.655169 194.082786 45.561832 721.571430 46.519450 43.163617 33.620619 20.000704 37.026307 93.475135 20.568615 79.109682 40.477215 45.763967 43.374388 42.251312 898.058434 22.214917 143.545418 23.637567 45.784958 267.363429 31.037061 10.980474 488.503496 999.359831 169.557500 141.053492 81.488826 16.638078 115.163808 77.248099 130.874965 12.516527 16.382132 23.934882 122.050078 262.044279 2996.102211 10.764148 65.549654 976.066908 53.151902 865.064211 28.589297 31.986785 397.158687 58.267161 25.350807 33.802799 47.396083 108.038556 15.474524 30.568121 39.538143 104.069768 42.793900 15.981852 19.768094 96.167439 22.457806 78.979356 33.456917 128.393785 9.028735 17.827140 7.909739 16.491784 63.505379 40.691826 95.848241 121.228974 25.408713 2905.712060 35.065594 29.237517 29.337386 28.634091 97.000902 5.705071 1.816856 1.419760 2.504516 6.802250 10.172237 19.951727 1.336745 5.052157 3.423748 7.744789 9.349799 102.914053 10.108189 11.249815 13.926650 21.377974 11.329708 97.707176 4.153955 12.476203 15.827777 14.087427 3.560941 54.941761 60.732149 2.785403 21.435226 13.708400 3.780030 7.317347 67.277601 36.232032 18.145739 92.075579 21.143147 24.664814 111.209349 230.160421 20.793832 11.490907 6.467550 23.008330 42.175293 6.105756 15.858954 3.577448 417.484339 4.379992 5.055334 15.946097 12.096853 10.209333 5.843517 6.763745 2.938336 1.081654 1.045189 1.036706 22.916155 29.939871 48.979658 5.583838 145.072732 146.792561 15.338817 5.809931 4.962913 21.673566 6.071246 0.0 0.0 1.421778 1.413188 1.422162 1.401024 1.412740 1.387073 1.426868 1.390322 1.437928 1.428937 7.001089 7.001089 0.0 1.121496 1.109517 1.115463 1.124654 4.340741 4.337860 4.274798 4.287866 4.363288 4.331476 4.313910 4.269546 4.361824 4.316758 4.336696 4.291975 4.344284 4.356668 4.275706 0.813291 0.826997 0.809340 0.0 0.500066 0.500066 0.818360 0.810072 0.820645 0.0 0.0 0.0 0.499923 0.499923 1.113481 1.111154 1.129034 1.118917 0.0 0.500041 36096.187009
min 1.000000 1.000000 1.000000 -1.000000 -1.000000 1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -1.000000 -1.00000 -1.000000 1.000000 -7.000000 1.000000 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 0.000000 -7.000000 -7.000000 -7.000000 -7.000000 0.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 0.000000 0.000000 0.000000 -7.000000 -7.000000 0.000000 -7.000000 -7.000000 -7.00000 -7.000000 -7.000000 -7.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 -7.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -7.000000 1.000000 -7.000000 -7.000000 1.000000 1.000000 -7.000000 -7.000000 1.000000 -7.000000 1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -1.000000 -1.000000 -1.00000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 1.000000 -1.000000 -7.000000 -7.000000 1.000000 -7.000000 -7.000000 -1.000000 1.000000 -7.000000 -7.000000 -7.000000 1.000000 1.000000 -7.000000 -7.000000 1.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 -1.000000 -7.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 -1.000000 -7.000000 1.000000 1.000000 0.000000 0.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -1.000000 -1.00000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -1.000000 -7.000000 -7.000000 -1.000000 -7.000000 -7.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -1.000000 -7.000000 -1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 -7.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -7.000000 -7.000000 -7.000000 -1.000000 -1.000000 -1.000000 -7.000000 1.000000 -7.000000 -7.000000 -7.000000 -7.000000 -7.000000 1926.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -7.000000 1.000000 1.000000 -7.000000 1.000000 -7.000000 1.000000 -7.000000 1.000000 1.000000 1.000000 -7.000000 -7.000000 1.000000 -3.0 1.000000 -7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.649000 0.000000 0.000000 0.629000 0.117000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.738000 1.137000 1.291000 0.414000 0.388000 0.278000 0.486000 0.496000 0.468000 0.473000 0.540000 0.631000 0.527000 0.488000 0.341000 0.000000 0.000000 0.549000 0.595000 0.473000 0.557000 0.555000 0.060000 0.271000 0.105000 0.463000 0.122000 0.218000 0.190000 0.215000 0.306000 0.108000 0.118000 0.623000 0.185000 0.072000 0.137000 0.902000 0.000000 0.000000 0.00000 0.719000 0.383000 0.585000 0.604000 0.607000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.812000 0.671000 0.629000 0.649000 0.717000 0.693000 0.624000 0.512000 0.544000 0.496000 0.603000 0.303000 0.563000 0.304000 0.539000 0.505000 0.588000 0.561000 1.114000 0.900000 0.780000 0.663000 0.657000 0.727000 0.000000 0.000000 1.350000 0.000000 0.000000 0.000000 0.000000 0.000000 0.533000 0.237000 0.000000 0.000000 0.607000 0.000000 1.349000 0.964000 0.000000 0.513000 0.000000 0.672000 0.593000 0.668000 0.595000 0.633000 0.413000 0.575000 0.481000 0.636000 0.567000 0.756000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.846000 0.751000 0.000000 0.000000 0.000000 0.000000 0.615000 0.640000 0.716000 0.243000 0.000000 0.540000 0.458000 0.455000 0.752000 0.473000 0.345000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.765000 0.000000 0.000000 0.000000 0.000000 0.000000 1.286000 0.000000 0.000000 0.000000 0.533000 0.471000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.913000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.788000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.402000 0.000000 0.000000 0.736000 0.000000 0.000000 0.000000 0.000000 0.795000 1.0 2.0 3.000000 3.000000 3.000000 3.000000 3.000000 8.000000 8.000000 8.000000 8.000000 8.000000 0.000000 0.000000 15.0 16.000000 16.000000 16.000000 16.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 1.000000 1.000000 1.000000 1.0 2.000000 2.000000 1.000000 1.000000 1.000000 4.0 5.0 6.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 0.000000 492.000000
33% 1045.120000 1.000000 1.000000 -1.000000 -1.000000 2.000000 2.000000 -1.000000 -1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.00000 1.000000 1.000000 -1.000000 2.000000 2.000000 2.00000 1.000000 2.000000 2.000000 2.000000 1.000000 1.000000 3.000000 30.000000 16.000000 11.000000 12.120000 19.000000 11.000000 58.000000 59.000000 55.000000 55.000000 43.120000 19.120000 -1.000000 -1.000000 33.000000 50.000000 41.000000 37.000000 16.000000 25.000000 4.000000 46.120000 16.000000 44.000000 7.000000 60.000000 50.000000 53.000000 50.000000 50.000000 63.000000 25.000000 14.000000 25.00000 1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 2.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 2.000000 2.000000 2.000000 4.000000 2.000000 3.000000 3.000000 3.000000 2.000000 3.000000 2.000000 2.000000 3.000000 2.000000 2.000000 2.000000 3.000000 3.000000 1.000000 5.000000 2.000000 1.000000 3.000000 3.000000 4.000000 2.000000 1.000000 2.000000 -1.000000 1.000000 -1.000000 -1.000000 1.000000 2.000000 3.000000 3.000000 2.000000 3.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.00000 -1.000000 3.000000 3.000000 -1.000000 -1.000000 1.000000 -1.000000 1.000000 1.000000 1.000000 -1.000000 2.000000 -1.000000 2.000000 4.000000 3.000000 3.000000 3.000000 2.000000 3.000000 1.000000 2.000000 3.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 3.000000 2.000000 3.000000 1.000000 3.000000 -1.000000 -1.000000 3.000000 -1.000000 -1.000000 3.000000 1.000000 3.000000 1.000000 1.000000 1.000000 0.000000 0.000000 6.000000 1.000000 1896.000000 2.000000 2.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 3.000000 -1.000000 -1.000000 -1.00000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 2.000000 2.000000 3.000000 2.000000 -1.000000 -1.000000 -1.000000 5.000000 3.000000 155.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 2.000000 1.000000 2.000000 2.000000 2.000000 2.000000 1.000000 1.000000 3.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 3.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 2.000000 2.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 5.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1957.000000 1.000000 2.000000 1.000000 2.000000 1.000000 1.000000 4.000000 1.000000 3.000000 3.000000 1.000000 2.000000 2.000000 1.000000 4.000000 2.000000 1.000000 -7.000000 17.000000 -3.0 2.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 6.304240 0.000000 0.000000 3.980240 4.217000 0.000000 0.000000 5.320840 0.000000 0.000000 0.000000 2.288360 5.341720 12.384240 7.750840 5.347600 3.856240 3.726120 3.794360 3.870240 3.759720 3.920120 4.129000 3.761120 3.897120 3.991240 4.122120 0.000000 0.000000 3.737240 3.702120 3.697120 4.749480 3.982120 3.216120 3.263480 3.308240 3.211120 3.360120 3.312000 3.337120 3.140240 3.258000 3.328240 3.166120 3.234120 3.215120 3.205360 3.391000 4.478360 0.000000 0.000000 0.00000 5.118120 3.040840 2.349000 4.177000 5.030760 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 15.602000 6.150000 5.260240 3.942240 7.272360 5.464120 7.263360 7.002120 7.665120 8.584120 8.062240 8.307240 6.825720 6.378960 5.154720 5.476480 6.933360 10.495000 14.085320 15.576080 6.964000 8.173920 7.337080 12.181600 0.000000 0.000000 36.317760 0.000000 0.000000 0.000000 0.000000 0.000000 8.365000 6.207600 0.000000 0.000000 6.511360 0.000000 11.829960 5.823120 0.000000 6.849000 0.000000 8.161120 8.167080 7.954120 5.693000 6.427000 4.160480 4.897360 5.262120 5.284000 6.717240 6.206480 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 9.983080 7.613000 0.000000 0.000000 0.000000 0.000000 7.436360 7.223840 7.120360 6.099240 0.000000 12.655840 10.037360 7.291360 9.570000 9.220120 4.636000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.579000 0.000000 0.000000 0.000000 0.000000 0.000000 24.288040 0.000000 0.000000 0.000000 6.882120 5.046000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7.091320 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6.468000 3.027360 3.941240 2.963920 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.168120 1.507360 1.115000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.574120 5.518000 6.209840 0.000000 0.000000 9.393120 0.000000 0.000000 0.000000 0.000000 4.970120 1.0 2.0 4.000000 4.000000 4.000000 4.000000 4.000000 9.000000 9.000000 9.000000 9.000000 9.000000 0.000000 0.000000 15.0 17.000000 17.000000 17.000000 17.000000 24.000000 25.000000 25.000000 25.000000 25.000000 25.000000 24.000000 24.000000 24.000000 24.000000 25.000000 24.000000 24.000000 24.000000 24.000000 1.000000 1.000000 2.000000 1.0 2.000000 2.000000 1.000000 2.000000 1.000000 4.0 5.0 6.0 1.000000 1.000000 2.000000 2.000000 2.000000 2.000000 0.0 0.000000 1653.120000
50% 1583.000000 1.000000 1.000000 1.000000 -1.000000 3.000000 3.000000 1.000000 -1.000000 2.000000 1.000000 -1.000000 -1.000000 -1.00000 1.000000 1.000000 -1.000000 2.000000 2.000000 2.00000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 38.000000 59.000000 44.000000 45.000000 44.000000 48.000000 41.000000 73.000000 73.000000 71.000000 71.000000 51.000000 45.000000 0.000000 -1.000000 50.000000 55.000000 52.000000 51.000000 50.000000 40.000000 11.000000 52.000000 31.000000 50.000000 20.000000 72.000000 60.000000 67.000000 58.000000 59.000000 78.000000 41.000000 30.000000 46.00000 2.000000 -1.000000 -1.000000 -1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 1.000000 -1.000000 -1.000000 -1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 3.000000 2.000000 2.000000 5.000000 2.000000 3.000000 3.000000 3.000000 3.000000 4.000000 4.000000 2.000000 3.000000 3.000000 2.000000 3.000000 4.000000 4.000000 2.000000 6.000000 2.000000 2.000000 4.000000 4.000000 4.000000 3.000000 1.000000 2.000000 -1.000000 1.000000 -1.000000 1.000000 2.000000 3.000000 3.000000 4.000000 3.000000 4.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 1.00000 1.000000 4.000000 4.000000 -1.000000 1.000000 2.000000 -1.000000 2.000000 2.000000 2.000000 -1.000000 2.000000 -1.000000 4.000000 5.000000 3.000000 3.000000 3.000000 3.000000 3.000000 2.000000 3.000000 4.000000 1.000000 -1.000000 1.000000 -1.000000 1.000000 -1.000000 1.000000 -1.000000 1.000000 -1.000000 4.000000 2.000000 4.000000 1.000000 4.000000 -1.000000 -1.000000 3.000000 1.000000 -1.000000 4.000000 1.000000 4.000000 2.000000 4.000000 4.000000 0.500000 1.000000 6.000000 2.000000 1965.000000 2.000000 4.000000 -1.000000 -1.000000 1.000000 -1.000000 -1.000000 -1.000000 3.000000 -1.000000 -1.000000 -1.00000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 2.000000 3.000000 3.000000 3.000000 1.000000 -1.000000 -1.000000 5.000000 5.000000 180.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 2.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 -1.000000 -1.000000 -1.000000 1.000000 2.000000 2.000000 2.000000 1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 4.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 3.000000 4.000000 5.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 3.000000 3.000000 2.000000 1.000000 1.000000 1.000000 -1.000000 5.000000 -1.000000 1.000000 1.000000 -1.000000 1.000000 1964.000000 2.000000 3.000000 1.000000 2.000000 1.000000 4.000000 7.000000 1.000000 3.000000 4.000000 1.000000 2.000000 2.000000 2.000000 5.000000 3.000000 2.000000 -7.000000 29.000000 -3.0 3.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 8.425000 1.148000 0.000000 5.173000 5.419000 1.055000 0.000000 6.665000 0.988000 0.000000 0.000000 3.122000 7.032000 17.468000 10.154000 6.835000 4.846000 4.691000 4.730000 4.899000 4.736000 5.131000 5.423000 4.980000 5.039000 5.022000 5.257000 0.884000 0.000000 4.727000 4.669000 4.536000 5.931000 4.934000 4.060000 4.188000 4.194000 3.994000 4.344000 4.132000 4.121000 3.938000 4.015000 4.219000 3.898000 3.999000 3.999000 4.055000 4.311000 6.254000 0.000000 0.000000 0.00000 6.760000 4.132000 3.146000 5.861000 8.135000 0.960000 0.000000 0.000000 0.000000 0.864000 0.000000 0.000000 0.000000 0.000000 1.424000 1.094000 0.951000 0.908000 23.544000 7.876000 6.621000 4.963000 9.121000 6.922000 9.405000 9.161000 10.419000 11.273000 10.243000 10.553000 9.038000 8.668000 7.159000 6.989000 9.117000 13.730000 18.257000 20.634000 8.629000 10.355000 9.629000 15.612000 0.000000 1.342000 47.008000 2.779000 0.000000 0.000000 1.074000 0.893000 10.864000 8.215000 0.000000 1.037000 8.268000 0.000000 15.747000 7.792000 0.000000 8.816000 0.000000 10.769000 11.015000 10.214000 7.299000 8.282000 5.555000 6.621000 6.894000 6.961000 8.453000 8.151000 0.000000 0.879000 0.000000 0.761000 0.000000 0.687000 0.000000 0.734000 0.000000 12.303000 9.403000 1.663000 0.000000 1.349000 0.000000 9.579000 9.006000 8.817000 7.981000 0.000000 17.346000 14.350000 9.257000 12.174000 12.731000 5.634000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.898000 0.000000 0.000000 0.000000 1.053000 0.000000 31.996000 1.959000 0.000000 0.000000 8.325000 6.065000 0.000000 0.000000 0.000000 0.000000 1.461000 0.000000 9.008000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.186000 0.000000 1.470000 0.000000 1.481000 0.000000 7.987000 4.057000 5.367000 4.373000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.714000 3.097000 2.158000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.898000 7.279000 7.799000 0.984000 0.000000 11.471000 0.833000 0.825000 1.095000 1.133000 6.219000 1.0 2.0 5.000000 5.000000 5.000000 5.000000 5.000000 10.000000 10.000000 10.000000 10.000000 10.000000 14.000000 0.000000 15.0 18.000000 17.000000 17.000000 18.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 2.000000 2.000000 2.000000 1.0 3.000000 2.000000 2.000000 2.000000 2.000000 4.0 5.0 6.0 2.000000 1.000000 2.000000 3.000000 2.000000 2.000000 0.0 1.000000 2049.000000
67% 2120.880000 2.000000 2.000000 1.000000 1.000000 3.000000 3.000000 2.000000 2.000000 3.000000 1.000000 -1.000000 -1.000000 -1.00000 2.000000 1.000000 -1.000000 2.000000 2.000000 2.00000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 79.880000 84.880000 61.000000 63.000000 64.000000 59.000000 54.000000 87.000000 86.000000 85.000000 85.000000 66.000000 56.000000 59.000000 65.000000 68.000000 71.000000 69.000000 74.000000 71.000000 50.000000 25.880000 67.000000 46.000000 57.000000 39.000000 84.000000 73.000000 79.000000 77.000000 70.000000 89.000000 50.000000 45.000000 51.00000 2.000000 1.000000 2.000000 1.000000 2.000000 2.000000 2.000000 2.000000 3.000000 2.000000 2.000000 -1.000000 -1.000000 2.000000 -1.000000 -1.000000 -1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 3.000000 3.000000 3.000000 6.000000 3.000000 3.000000 4.000000 3.000000 4.000000 4.000000 5.000000 3.000000 3.000000 3.000000 3.000000 4.000000 6.000000 5.000000 3.000000 7.000000 3.000000 2.000000 4.000000 4.000000 4.000000 4.000000 2.000000 2.000000 -1.000000 2.000000 1.000000 2.000000 3.000000 3.000000 5.000000 5.000000 4.000000 5.000000 3.000000 3.000000 3.000000 1.000000 1.000000 3.000000 2.000000 2.00000 4.000000 6.000000 6.000000 2.000000 2.000000 3.000000 2.000000 3.000000 3.000000 2.000000 1.000000 3.000000 2.000000 4.000000 7.000000 4.000000 4.000000 4.000000 3.000000 4.000000 2.000000 4.000000 5.000000 2.000000 2.000000 3.000000 3.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 5.000000 2.000000 5.000000 1.000000 5.000000 2.000000 2.000000 4.000000 1.000000 1.000000 5.000000 1.000000 5.000000 2.000000 7.000000 7.000000 1.000000 1.000000 6.000000 3.000000 1989.000000 2.000000 5.000000 1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 3.000000 -1.000000 -1.000000 -1.00000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 2.000000 2.000000 3.000000 4.000000 4.000000 4.000000 3.000000 3.000000 2.000000 5.000000 7.000000 200.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 1.000000 -1.000000 2.000000 2.000000 -1.000000 2.000000 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 1.000000 2.000000 2.000000 2.000000 2.000000 1.000000 1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 1.000000 2.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 2.000000 1.000000 1.000000 2.000000 1.000000 1.000000 2.000000 2.000000 1.000000 2.000000 2.000000 2.000000 1.000000 2.000000 2.000000 2.000000 2.000000 3.000000 3.000000 5.000000 2.000000 1.000000 3.000000 1.000000 3.000000 4.000000 -1.000000 -1.000000 -1.000000 4.000000 4.000000 5.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 3.000000 4.000000 3.000000 1.000000 1.000000 1.000000 1.000000 5.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1979.000000 2.000000 4.000000 4.000000 2.000000 1.000000 5.000000 9.000000 1.000000 4.000000 5.000000 2.000000 3.000000 2.000000 3.000000 6.000000 6.000000 9.000000 1.000000 37.000000 -3.0 3.000000 9.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 11.219160 3.299760 3.537400 6.692160 6.928400 6.826880 7.052880 8.317280 6.792000 0.000000 0.000000 4.132760 9.037520 22.723160 13.299320 8.907680 6.139640 6.126280 5.987000 6.398880 5.960520 6.809840 7.420640 6.663760 6.561880 6.777760 6.947000 3.989640 4.090880 5.957880 5.944000 5.661640 7.518400 6.290640 5.168880 5.429040 5.304760 5.075680 5.585280 5.334760 5.208880 4.979640 5.266160 5.370880 4.991760 5.092520 5.101880 5.203760 5.574640 8.455760 4.477880 2.676520 5.56980 8.377280 5.590000 4.256400 7.748920 11.616040 7.376760 8.722000 0.000000 0.000000 5.270880 5.145000 4.213160 2.983000 2.864200 5.919440 4.561760 3.369520 3.160160 36.396160 9.894880 8.306280 6.204000 11.530640 8.748760 11.966480 11.911520 14.155280 14.920720 12.780760 13.545680 11.756760 11.240520 9.160640 9.087320 12.243040 17.834160 23.634200 26.352240 10.725880 13.367400 12.515040 20.043880 5.249400 5.703880 58.774480 17.406640 8.542920 5.469400 7.179600 5.457000 14.178320 10.625760 7.689640 8.332080 10.402000 7.851280 20.144040 10.151760 4.489880 11.678760 11.470440 13.852680 14.996880 13.077400 9.287400 10.650160 7.311520 8.894760 8.910400 8.999400 10.803520 10.643640 6.148280 7.681880 8.120280 6.703040 7.675080 6.769800 7.441640 5.655000 6.140400 15.534960 11.560880 6.894760 8.317920 7.278880 8.553760 12.057760 11.439400 11.031880 10.157880 3.253120 23.971160 20.130840 12.010880 15.939080 18.316000 6.805760 0.000000 0.000000 0.000000 0.000000 5.568280 5.340880 7.724880 0.000000 0.000000 0.000000 6.834880 5.963640 40.950720 4.199640 5.014640 6.530880 10.151920 7.378640 16.018680 3.121640 0.000000 4.612880 4.599920 0.000000 11.295680 3.364360 0.000000 0.000000 0.000000 0.000000 0.000000 21.456520 19.658760 13.389880 13.781880 12.434920 9.229600 9.715920 5.304760 6.722160 5.696400 2.717800 2.562000 1.913680 2.444680 1.948000 1.378880 0.000000 0.000000 0.000000 5.091880 4.712680 3.568760 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7.740760 9.372760 10.003760 4.438880 6.273280 13.807160 6.967920 4.286760 4.047400 3.595280 7.559640 1.0 2.0 6.000000 6.000000 6.000000 6.000000 6.000000 11.000000 11.000000 11.000000 11.000000 11.000000 14.000000 14.000000 15.0 18.000000 18.000000 18.000000 18.000000 29.000000 30.000000 29.880000 30.000000 30.000000 30.000000 29.000000 29.000000 30.000000 30.000000 30.000000 29.000000 30.000000 30.000000 29.000000 2.000000 3.000000 3.000000 1.0 3.000000 3.000000 3.000000 3.000000 2.000000 4.0 5.0 6.0 2.000000 2.000000 3.000000 3.000000 3.000000 3.000000 0.0 1.000000 2552.880000
max 3165.000000 2.000000 4.000000 3.000000 4.000000 4.000000 4.000000 5.000000 4.000000 5.000000 3.000000 2.000000 2.000000 2.00000 3.000000 3.000000 2.000000 2.000000 2.000000 2.00000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 997.000000 997.000000 997.000000 997.000000 997.000000 997.000000 997.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 997.000000 997.000000 997.000000 997.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.00000 3.000000 9.000000 4.000000 4.000000 4.000000 4.000000 4.000000 5.000000 4.000000 2.000000 2.000000 4.000000 4.000000 3.000000 2.000000 2.000000 2.000000 5.000000 5.000000 5.000000 5.000000 7.000000 7.000000 7.000000 7.000000 5.000000 5.000000 5.000000 7.000000 5.000000 5.000000 5.000000 5.000000 5.000000 7.000000 7.000000 5.000000 5.000000 5.000000 5.000000 5.000000 7.000000 7.000000 7.000000 7.000000 5.000000 5.000000 5.000000 5.000000 7.000000 7.000000 3.000000 2.000000 3.000000 3.000000 5.000000 7.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 7.000000 5.000000 5.00000 7.000000 7.000000 7.000000 5.000000 7.000000 5.000000 7.000000 5.000000 5.000000 2.000000 5.000000 7.000000 7.000000 7.000000 7.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 2.000000 5.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 5.000000 2.000000 5.000000 2.000000 5.000000 2.000000 2.000000 5.000000 2.000000 2.000000 5.000000 2.000000 5.000000 2.000000 7.000000 7.000000 1.000000 1.000000 99.000000 4.000000 2018.000000 2.000000 7.000000 4.000000 4.000000 2.000000 3.000000 999.000000 5.000000 3.000000 2019.000000 2.000000 2.00000 2.000000 2.000000 2.000000 2.000000 2.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 2.000000 9.000000 11.500000 999.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 3.000000 5.000000 12.000000 3.000000 2.000000 5.000000 2.000000 4.000000 2.000000 4.000000 3.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 7.000000 5.000000 5.000000 5.000000 5.000000 5.000000 6.000000 6.000000 3.000000 3.000000 5.000000 5.000000 5.000000 5.000000 5.000000 2.000000 2000.000000 2.000000 6.000000 6.000000 2.000000 8.000000 9.000000 97.000000 3.000000 6.000000 8.000000 7.000000 7.000000 2.000000 4.000000 7.000000 8.000000 12.000000 90.000000 56.000000 -3.0 4.000000 9.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000 1.000000 3329.142000 283.030000 3716.698000 4510.024000 5353.798000 294.913000 1612.191000 4173.815000 3979.179000 17243.753000 212.733000 1329.599000 20128.321000 4797.269000 2161.685000 474.717000 300.425000 4478.240000 256.690000 10614.993000 505.686000 5286.402000 907.872000 8316.339000 193.480000 2832.327000 432.521000 308.329000 762.215000 816.590000 2022.514000 1170.860000 14131.280000 756.190000 1284.965000 174.731000 1107.227000 4204.543000 283.518000 1678.225000 244.462000 587.067000 2853.474000 3496.967000 302.005000 208.710000 2165.035000 13528.502000 565.111000 1000.423000 11443.881000 221.362000 817.92500 2166.168000 1324.991000 2755.001000 394.123000 1640.298000 1294.523000 5033.181000 19.199000 107.309000 509.857000 516.104000 277.502000 340.382000 167.083000 5113.233000 1571.900000 419.809000 652.383000 3572.141000 3697.854000 10871.468000 2361.832000 40511.681000 1619.251000 1930.682000 1440.703000 409.381000 1051.996000 4116.227000 518.480000 4046.200000 1814.829000 1659.970000 1734.092000 1587.520000 50514.468000 429.053000 7444.931000 589.019000 1347.613000 13738.832000 658.068000 273.400000 24606.442000 55770.827000 8411.571000 7600.416000 4391.346000 601.745000 6182.909000 3900.135000 4658.247000 227.618000 366.238000 716.259000 5675.307000 11441.165000 168563.584000 384.680000 3402.048000 54876.037000 2508.591000 48464.985000 1108.529000 1190.970000 22251.219000 2800.366000 1211.201000 1530.032000 2238.145000 5893.071000 522.649000 1460.527000 1826.907000 5556.395000 2308.030000 444.203000 670.029000 5189.545000 667.093000 3986.526000 1367.509000 5985.957000 329.162000 709.513000 115.925000 529.633000 2360.807000 1848.990000 5081.053000 5628.526000 780.263000 163485.708000 1274.305000 1052.558000 531.474000 700.991000 5431.972000 288.646000 25.872000 31.343000 110.287000 177.980000 355.788000 814.179000 38.299000 75.818000 98.169000 152.853000 310.773000 2610.304000 300.601000 460.057000 667.837000 626.714000 346.873000 4418.358000 86.403000 684.437000 716.407000 377.896000 85.989000 1856.375000 3398.365000 36.171000 902.372000 700.214000 73.700000 184.015000 3517.603000 1235.324000 618.634000 4620.500000 576.556000 1170.608000 6213.150000 12914.558000 649.053000 355.542000 220.059000 1041.387000 2340.553000 205.250000 824.052000 82.856000 23442.337000 159.664000 220.371000 683.150000 533.287000 442.793000 280.159000 357.771000 84.795000 23.890000 34.589000 44.077000 980.717000 892.568000 1804.309000 100.479000 8120.092000 5315.118000 662.626000 127.858000 80.219000 1193.837000 146.586000 1.0 2.0 7.000000 7.000000 7.000000 7.000000 7.000000 12.000000 12.000000 12.000000 12.000000 12.000000 14.000000 14.000000 15.0 19.000000 19.000000 19.000000 19.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 34.000000 3.000000 3.000000 3.000000 1.0 3.000000 3.000000 3.000000 3.000000 3.000000 4.0 5.0 6.0 2.000000 2.000000 4.000000 4.000000 4.000000 4.000000 0.0 1.000000 489139.000000

To see the count of non-missing observations, number of unique values, and the most frequent value and its frequency for string or categorical features, use the include='object' argument:

anes.describe(include='object')
version weight weight_spss placeid1a_t mip pk_cjus pk_germ pid2d pid2r bmi relig1a_txt relig1b_t relig3b_t socmed_t employ_t presvote16post_t religpew_t religpew_protestant_t FIPCounty EnrollmentDate CompletedSurveys tsmart_P2012 tsmart_G2012 tsmart_P2016 tsmart_G2016 tsmart_P2018 tsmart_G2018 ord_ftillegal ord_electable_1 ord_electable_2 ord_tchina ord_trussia ord_tiran ord_tmexico ord_tjapan ord_disable1 ord_disable2 ord_disable3 ord_disable4 ord_disable5 ord_disable6 ord_exptravel_ever ord_exphomesch ord_expfarm ord_expffood ord_expconvert ord_expholiday ord_explie ord_expshark ord_expdivorce ord_exparrest ord_expoverdose ord_expdefault ord_exppubasst ord_exphybrid ord_expmistake ord_explightning ord_exptravel_year ord_expindian ord_exphunt ord_expflag ord_exppublib ord_explottery ord_expshoponline ord_exppubtrans ord_expfight ord_expavoid ord_expknowimmig ord_expknowtrans ord_expbuyusa ord_expretire ord_expcolldebt ord_expknowpris starttime endtime pop_density_public flag_state
count 3165 3165 3165 3165 3158 3143 3143 3165 3164 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165 3165
unique 1 825 825 43 2073 511 599 22 12 1381 1 1 1 49 4 1 4 1 1 2027 818 2 2 2 2 2 2 1 3 3 6 6 6 6 6 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 6 6 6 6 6 6 6 6 6 6 4 4 4 4 4 4 3132 3146 259 4
top ANES 2019 Pilot Study version 20200204 __NA__ Donald Trump chief justice chancellor of germany __NA__ __NA__ -3, restricted access -3, restricted access -3, restricted access __NA__ __NA__ __NA__ __NA__ -3, restricted access -3, restricted acces 250 108 1 1 12/31/2019 19:41:26 12/21/2019 22:50:57 0
freq 3165 165 165 3121 77 313 473 3140 3148 42 3165 3165 3165 3085 3162 3165 3159 3165 3165 13 17 2394 1633 2166 1773 2164 1587 3165 1769 1769 1579 1579 1579 1579 1579 1586 1586 1586 1586 1586 1586 1579 1579 1579 1579 1579 1579 1579 1579 1586 1586 1586 1586 1586 1586 1586 1586 1579 1579 1579 1579 1579 1586 1586 1586 1586 1586 1579 1579 1579 1586 1586 1586 2 2 188 2901

To see the name and data type of each column, use the .dtypes attribute. To avoid truncation, type pd.set_option('display.max_rows', None). Because there are 900 columns to report in this case, to save space I won’t turn off the truncation:

anes.dtypes
version               object
caseid                 int64
weight                object
weight_spss           object
form                   int64
                       ...  
starttime             object
endtime               object
duration               int64
pop_density_public    object
flag_state            object
Length: 900, dtype: object

To find rows in the data that are duplicated, use the .duplicated() method. This method outputs a list of values that are True or False indicating whether or not each row is a duplicate of another row in the dataframe. To view the duplicated rows, use the .duplicated() output to filter the rows when using .loc to subset the data (more on .loc below). By default, .duplicated() marks all duplicate rows as True except for the first occurrence in the dataframe. In the case of the ANES data, there are no duplicated rows:

anes.loc[anes.duplicated(),]
version caseid weight weight_spss form follow reg1a reg1b liveurban youthurban placeid1a placeid1a_t placeid1b placeidimport turnout16a turnout16a1 turnout16b turnout16c vote16 turnout18a turnout18a1 particip_1 particip_2 particip_3 particip_4 particip_5 particip_6 particip_7 particip_8 particip_9 fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales vote20dem vote20cand vote20cand2 electable vote20jb vote20ew vote20bs cvote2020 tsplit1 contact1a contact1b contact2a contact2b contact3 contact4m_1 contact4m_2 contact4m_3 apppres5 frnpres5 immpres5 econpres5 apppres7 frnpres7 immpres7 econpres7 mip econnow finworry confecon improve1 national1 national2 conspire1 conspire2 conspire3 taxecon billtax trade1 trade2 trade3 trade4 richpoor2 guarinc lcself lcd lcr pop1 pop2 pop3 corrupt immignum refugees dreamstr dreamer dreamstr1 dreamstr2 wall5 wall7 pathway preturn popen release1 release2 famsep tchina trussia tiran tmexico tjapan hlthcare1 hlthcare2 abortion1 abortion2 freecol loans diversity5 diversity7 language buyback gw1 gw2 knowopioid1 knowopioid2 opioiddo sentence prek demo4 experts science exphelp elite1 elite2 elite3 elite4 ukraine1 ukraine2 excessive rural1alt1 rural1alt2 rural2alt1 rural2alt2 rural3alt1 rural3alt2 rural4alt1 rural4alt2 conf_unemp unemp conf_interfere interfere conf_autism autism1 autism2 conf_gmo gmo1 gmo2 conf_warm warm conf_illegal illegal impeach1 impeach2 pk_cjus pk_cjus_correct pk_germ pk_germ_correct pk_sen pk_spend pk_geer cheat pid7x pid1d pid2d pid1r pid2r pidstr pidlean ngun shooting dem_activduty milyears milyr1 milyr2 milyr3 milyr4 milyr5 milyr6 combat harass1a harass1b rr1 rr2 rr3 rr4 health1a health1b hospital feet inches nweight bmi disable1 disable2 disable3 disable4 disable5 disable6 smoker1 smoker2 exercise relig1a relig1a_txt relig2a att1 att2 att3 relig1b relig1b_t relig2b relig3b relig3b_t attother exptravel_ever exphomesch expfarm expffood expconvert expholiday explie expshark expdivorce exparrest expoverdose expdefault exppubasst exphybrid expmistake explightning exptravel_year expindian exphunt expflag exppublib explottery expshoponline exppubtrans expfight expavoid expknowimmig expknowtrans expbuyusa expretire expcolldebt expknowpris socmed_1 socmed_2 socmed_3 socmed_4 socmed_5 socmed_6 socmed_7 socmed_8 socmed_9 socmed_t facebook1 facebook2 facebook3 twitter1 twitter2 twitter3 instagram1 instagram2 instagram3 reddit1 reddit2 reddit3 youtube1 youtube2 youtube3 snapchat1 snapchat2 snapchat3 tiktok1 tiktok2 tiktok3 raceid racework whitejob race_sub1 race_sub2 voterid1 voterid2 serious photo1 photo2 photo3 photo4 reinterview birthyr gender educ marstat child18 race employ employ_t faminc_new votereg ideo5 pid7 newsint presvote16post presvote16post_t pew_bornagain pew_religimp pew_churatd pew_prayer religpew religpew_t religpew_protestant religpew_protestant_t inputstate zipCode FIPCounty region EnrollmentDate CompletedSurveys qualityControl_overall_scale tsmart_P2012 tsmart_G2012 tsmart_P2016 tsmart_G2016 tsmart_P2018 tsmart_G2018 abortion1_skp abortion2_skp apppres5_skp apppres7_skp att1_skp att2_skp att3_skp attother_skp autism1_skp autism2_skp billtax_skp buyback_skp cexp1_grid_skp cexp2_grid_skp cheat_skp combat_skp confecon_skp conspire1_skp conspire2_skp conspire3_skp contact1a_skp contact1b_skp contact2a_skp contact2b_skp contact3_skp corrupt_skp cvote2020_skp dem_activduty_skp demo4_skp disable_grid_skp diversity5_skp diversity7_skp dreamer_skp econnow_skp econpres5_skp econpres7_skp electable_skp elite1_skp elite2_skp elite3_skp elite4_skp excessive_skp exercise_skp exp1_grid_skp exp2_grid_skp experts_skp exphelp_skp facebook1_skp facebook2_skp facebook3_skp finworry_skp follow_skp freecol_skp frnpres5_skp frnpres7_skp ftasian_skp ftbiden_skp ftblack_skp ftbritain_skp ftbuttigieg_skp ftcanada_skp ftchina_skp ftfrance_skp ftgermany_skp ftharris_skp fthisp_skp ftice_skp ftillegal_skp ftimmig1_skp ftimmig2_skp ftiran_skp ftisrael_skp ftjapan_skp ftjournal_skp ftmexico_skp ftmuslim_skp ftnato_skp ftnkorea_skp ftnra_skp ftobama_skp ftpales_skp ftrussia_skp ftsanders_skp ftsaudi_skp fttrump_skp ftturkey_skp ftukraine_skp ftun_skp ftwarren_skp ftwhite_skp gmo1_skp gmo2_skp guarinc_skp gw_grid_skp harass1a_skp harass1b_skp health1a_skp health1b_skp hlthcare1_skp hlthcare2_skp hospital_skp illegal_skp immignum_skp immpres5_skp immpres7_skp impeach1_skp impeach2_skp improve1_skp instagram1_skp instagram2_skp instagram3_skp interfere_skp knowopioid1_skp knowopioid2_skp language_skp lc_grid_skp liveurban_skp loans_skp milyears_skp milyr_skp mip_skp national1_skp national2_skp ngun_skp opioiddo_skp particip_skp path_grid_skp pid1d_skp pid1r_skp pidlean_skp pidstr_skp pk_cjus_skp pk_geer_skp pk_germ_skp pk_sen_skp pk_spend_skp placeid1a_skp placeid1b_skp placeidimport_skp pop_grid_skp prek_skp raceid_skp racework_skp reddit1_skp reddit2_skp reddit3_skp refugees_skp reg1a_skp reg1b_skp reinterivew_skp relig1a_skp relig1b_skp relig2a_skp relig2b_skp relig3b_skp rexp1_grid_skp rexp2_grid_skp richpoor2_skp rr_grid_skp rural1alt1_skp rural1alt2_skp rural2alt1_skp rural2alt2_skp rural3alt1_skp rural4alt1_skp rural4alt2_skp science_skp sentence_skp serious_skp shooting_skp smoker1_skp smoker2_skp snapchat1_skp snapchat2_skp snapchat3_skp socmed_skp tall_skp taxecon_skp threat_grid_skp tiktok1_skp tiktok2_skp tiktok3_skp trade1_skp trade2_skp trade3_skp trade4_skp tsplit1_skp turnout16a_skp turnout16b_skp turnout16c_skp turnout18a_skp twitter1_skp twitter2_skp twitter3_skp ukraine1_skp ukraine2_skp unemp_skp vote16_skp vote20bs_skp vote20cand2_skp vote20cand_skp vote20dem_skp vote20ew_skp vote20jb_skp voterid1_skp voterid2_skp wall7_skp wall5_skp warm_skp nweight_skp whitejob_skp youthurban_skp youtube1_skp youtube2_skp youtube3_skp rural3alt2_skp follow_page_timing reg1a_page_timing reg1b_page_timing liveurban_page_timing youthurban_page_timing placeid1a_page_timing placeid1b_page_timing placeidimport_page_timing turnout16a_page_timing turnout16b_page_timing turnout16c_page_timing vote16_page_timing turnout18a_page_timing particip_page_timing fttrump_page_timing ftobama_page_timing ftbiden_page_timing ftwarren_page_timing ftsanders_page_timing ftbuttigieg_page_timing ftharris_page_timing ftblack_page_timing ftwhite_page_timing fthisp_page_timing ftasian_page_timing ftmuslim_page_timing ftillegal_page_timing ftimmig1_page_timing ftimmig2_page_timing ftjournal_page_timing ftnato_page_timing ftun_page_timing ftice_page_timing ftnra_page_timing ftchina_page_timing ftnkorea_page_timing ftmexico_page_timing ftsaudi_page_timing ftukraine_page_timing ftiran_page_timing ftbritain_page_timing ftgermany_page_timing ftjapan_page_timing ftisrael_page_timing ftfrance_page_timing ftcanada_page_timing ftturkey_page_timing ftrussia_page_timing ftpales_page_timing vote20dem_page_timing vote20cand_page_timing vote20cand2_page_timing electable_page_timing vote20jb_page_timing vote20ew_page_timing vote20bs_page_timing cvote2020_page_timing tsplit1_page_timing contact1a_page_timing contact1b_page_timing contact2a_page_timing contact2b_page_timing contact3_page_timing apppres5_page_timing frnpres5_page_timing immpres5_page_timing econpres5_page_timing apppres7_page_timing frnpres7_page_timing immpres7_page_timing econpres7_page_timing mip_page_timing econnow_page_timing finworry_page_timing confecon_page_timing improve1_page_timing national1_page_timing national2_page_timing conspire1_page_timing conspire2_page_timing conspire3_page_timing taxecon_page_timing billtax_page_timing trade1_page_timing trade2_page_timing trade3_page_timing trade4_page_timing richpoor2_page_timing guarinc_page_timing lc_grid_page_timing pop_grid_page_timing corrupt_page_timing immignum_page_timing refugees_page_timing dreamer_page_timing wall_page_timing wall7_page_timing path_grid_page_timing threat_grid_page_timing hlthcare1_page_timing hlthcare2_page_timing abortion1_page_timing abortion2_page_timing freecol_page_timing loans_page_timing diversity5_page_timing diversity7_page_timing language_page_timing buyback_page_timing gw_grid_page_timing knowopioid1_page_timing knowopioid2_page_timing opioiddo_page_timing sentence_page_timing prek_page_timing demo4_page_timing experts_page_timing science_page_timing exphelp_page_timing elite1_page_timing elite2_page_timing elite3_page_timing elite4_page_timing ukraine1_page_timing ukraine2_page_timing excessive_page_timing rural1alt1_page_timing rural1alt2_page_timing rural2alt1_page_timing rural2alt2_page_timing rural3alt1_page_timing rural3alt2_page_timing rural4alt1_page_timing rural4alt2_page_timing unemp_page_timing interfere_page_timing autism1_page_timing autism2_page_timing gmo1_page_timing gmo2_page_timing warm_page_timing illegal_page_timing impeach1_page_timing impeach2_page_timing pk2_intro_page_timing pk_cjus_page_timing pk_germ_page_timing pk_sen_page_timing pk_spend_page_timing pk_geer_page_timing cheat_page_timing pid1d_page_timing pid1r_page_timing pidstr_page_timing pidlean_page_timing ngun_page_timing shooting_page_timing dem_activduty_page_timing milyears_page_timing milyr_page_timing combat_page_timing harass1a_page_timing harass1b_page_timing rr_grid_page_timing health1a_page_timing health1b_page_timing hospital_page_timing tall_page_timing nweight_page_timing disable_grid_page_timing smoker1_page_timing smoker2_page_timing exercise_page_timing relig1a_page_timing relig2a_page_timing att1_page_timing att2_page_timing att3_page_timing relig1b_page_timing relig2b_page_timing relig3b_page_timing attother_page_timing exp1_grid_page_timing exp2_grid_page_timing rexp1_grid_page_timing rexp2_grid_page_timing cexp1_grid_page_timing cexp2_grid_page_timing socmed_page_timing facebook1_page_timing facebook2_page_timing facebook3_page_timing twitter1_page_timing twitter2_page_timing twitter3_page_timing instagram1_page_timing instagram2_page_timing instagram3_page_timing reddit1_page_timing reddit2_page_timing reddit3_page_timing youtube1_page_timing youtube2_page_timing youtube3_page_timing snapchat1_page_timing snapchat2_page_timing snapchat3_page_timing tiktok1_page_timing tiktok2_page_timing tiktok3_page_timing raceid_page_timing racework_page_timing whitejob_page_timing voterid1_page_timing voterid2_page_timing serious_page_timing photo1_page_timing photo2_page_timing photo3_page_timing photo4_page_timing reinterview_page_timing ord_fttrump ord_ftobama ord_ftbiden ord_ftwarren ord_ftsanders ord_ftbuttigieg ord_ftharris ord_ftblack ord_ftwhite ord_fthisp ord_ftasian ord_ftmuslim ord_ftillegal ord_ftimmig1 ord_ftimmig2 ord_ftjournal ord_ftnato ord_ftun ord_ftice ord_ftnra ord_ftchina ord_ftnkorea ord_ftmexico ord_ftsaudi ord_ftukraine ord_ftiran ord_ftbritain ord_ftgermany ord_ftjapan ord_ftisrael ord_ftfrance ord_ftcanada ord_ftturkey ord_ftrussia ord_ftpales ord_electable_1 ord_electable_2 ord_conspire1 ord_conspire2 ord_conspire3 ord_lcself ord_lcd ord_lcr ord_pathway ord_preturn ord_popen ord_release1 ord_release2 ord_famsep ord_tchina ord_trussia ord_tiran ord_tmexico ord_tjapan ord_gw1 ord_gw2 ord_elite1 ord_elite2 ord_elite3 ord_elite4 ord_disable1 ord_disable2 ord_disable3 ord_disable4 ord_disable5 ord_disable6 ord_exptravel_ever ord_exphomesch ord_expfarm ord_expffood ord_expconvert ord_expholiday ord_explie ord_expshark ord_expdivorce ord_exparrest ord_expoverdose ord_expdefault ord_exppubasst ord_exphybrid ord_expmistake ord_explightning ord_exptravel_year ord_expindian ord_exphunt ord_expflag ord_exppublib ord_explottery ord_expshoponline ord_exppubtrans ord_expfight ord_expavoid ord_expknowimmig ord_expknowtrans ord_expbuyusa ord_expretire ord_expcolldebt ord_expknowpris ord_lc_reverse ord_att2_reverse starttime endtime duration pop_density_public flag_state

To generate a dataframe without these duplicted rows, use the ~ operator to negate the logical values. That tells Python to keep the rows that are not duplicated:

anes.loc[~anes.duplicated(),]
version caseid weight weight_spss form follow reg1a reg1b liveurban youthurban placeid1a placeid1a_t placeid1b placeidimport turnout16a turnout16a1 turnout16b turnout16c vote16 turnout18a turnout18a1 particip_1 particip_2 particip_3 particip_4 particip_5 particip_6 particip_7 particip_8 particip_9 fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales vote20dem vote20cand vote20cand2 electable vote20jb vote20ew vote20bs cvote2020 tsplit1 contact1a contact1b contact2a contact2b contact3 contact4m_1 contact4m_2 contact4m_3 apppres5 frnpres5 immpres5 econpres5 apppres7 frnpres7 immpres7 econpres7 mip econnow finworry confecon improve1 national1 national2 conspire1 conspire2 conspire3 taxecon billtax trade1 trade2 trade3 trade4 richpoor2 guarinc lcself lcd lcr pop1 pop2 pop3 corrupt immignum refugees dreamstr dreamer dreamstr1 dreamstr2 wall5 wall7 pathway preturn popen release1 release2 famsep tchina trussia tiran tmexico tjapan hlthcare1 hlthcare2 abortion1 abortion2 freecol loans diversity5 diversity7 language buyback gw1 gw2 knowopioid1 knowopioid2 opioiddo sentence prek demo4 experts science exphelp elite1 elite2 elite3 elite4 ukraine1 ukraine2 excessive rural1alt1 rural1alt2 rural2alt1 rural2alt2 rural3alt1 rural3alt2 rural4alt1 rural4alt2 conf_unemp unemp conf_interfere interfere conf_autism autism1 autism2 conf_gmo gmo1 gmo2 conf_warm warm conf_illegal illegal impeach1 impeach2 pk_cjus pk_cjus_correct pk_germ pk_germ_correct pk_sen pk_spend pk_geer cheat pid7x pid1d pid2d pid1r pid2r pidstr pidlean ngun shooting dem_activduty milyears milyr1 milyr2 milyr3 milyr4 milyr5 milyr6 combat harass1a harass1b rr1 rr2 rr3 rr4 health1a health1b hospital feet inches nweight bmi disable1 disable2 disable3 disable4 disable5 disable6 smoker1 smoker2 exercise relig1a relig1a_txt relig2a att1 att2 att3 relig1b relig1b_t relig2b relig3b relig3b_t attother exptravel_ever exphomesch expfarm expffood expconvert expholiday explie expshark expdivorce exparrest expoverdose expdefault exppubasst exphybrid expmistake explightning exptravel_year expindian exphunt expflag exppublib explottery expshoponline exppubtrans expfight expavoid expknowimmig expknowtrans expbuyusa expretire expcolldebt expknowpris socmed_1 socmed_2 socmed_3 socmed_4 socmed_5 socmed_6 socmed_7 socmed_8 socmed_9 socmed_t facebook1 facebook2 facebook3 twitter1 twitter2 twitter3 instagram1 instagram2 instagram3 reddit1 reddit2 reddit3 youtube1 youtube2 youtube3 snapchat1 snapchat2 snapchat3 tiktok1 tiktok2 tiktok3 raceid racework whitejob race_sub1 race_sub2 voterid1 voterid2 serious photo1 photo2 photo3 photo4 reinterview birthyr gender educ marstat child18 race employ employ_t faminc_new votereg ideo5 pid7 newsint presvote16post presvote16post_t pew_bornagain pew_religimp pew_churatd pew_prayer religpew religpew_t religpew_protestant religpew_protestant_t inputstate zipCode FIPCounty region EnrollmentDate CompletedSurveys qualityControl_overall_scale tsmart_P2012 tsmart_G2012 tsmart_P2016 tsmart_G2016 tsmart_P2018 tsmart_G2018 abortion1_skp abortion2_skp apppres5_skp apppres7_skp att1_skp att2_skp att3_skp attother_skp autism1_skp autism2_skp billtax_skp buyback_skp cexp1_grid_skp cexp2_grid_skp cheat_skp combat_skp confecon_skp conspire1_skp conspire2_skp conspire3_skp contact1a_skp contact1b_skp contact2a_skp contact2b_skp contact3_skp corrupt_skp cvote2020_skp dem_activduty_skp demo4_skp disable_grid_skp diversity5_skp diversity7_skp dreamer_skp econnow_skp econpres5_skp econpres7_skp electable_skp elite1_skp elite2_skp elite3_skp elite4_skp excessive_skp exercise_skp exp1_grid_skp exp2_grid_skp experts_skp exphelp_skp facebook1_skp facebook2_skp facebook3_skp finworry_skp follow_skp freecol_skp frnpres5_skp frnpres7_skp ftasian_skp ftbiden_skp ftblack_skp ftbritain_skp ftbuttigieg_skp ftcanada_skp ftchina_skp ftfrance_skp ftgermany_skp ftharris_skp fthisp_skp ftice_skp ftillegal_skp ftimmig1_skp ftimmig2_skp ftiran_skp ftisrael_skp ftjapan_skp ftjournal_skp ftmexico_skp ftmuslim_skp ftnato_skp ftnkorea_skp ftnra_skp ftobama_skp ftpales_skp ftrussia_skp ftsanders_skp ftsaudi_skp fttrump_skp ftturkey_skp ftukraine_skp ftun_skp ftwarren_skp ftwhite_skp gmo1_skp gmo2_skp guarinc_skp gw_grid_skp harass1a_skp harass1b_skp health1a_skp health1b_skp hlthcare1_skp hlthcare2_skp hospital_skp illegal_skp immignum_skp immpres5_skp immpres7_skp impeach1_skp impeach2_skp improve1_skp instagram1_skp instagram2_skp instagram3_skp interfere_skp knowopioid1_skp knowopioid2_skp language_skp lc_grid_skp liveurban_skp loans_skp milyears_skp milyr_skp mip_skp national1_skp national2_skp ngun_skp opioiddo_skp particip_skp path_grid_skp pid1d_skp pid1r_skp pidlean_skp pidstr_skp pk_cjus_skp pk_geer_skp pk_germ_skp pk_sen_skp pk_spend_skp placeid1a_skp placeid1b_skp placeidimport_skp pop_grid_skp prek_skp raceid_skp racework_skp reddit1_skp reddit2_skp reddit3_skp refugees_skp reg1a_skp reg1b_skp reinterivew_skp relig1a_skp relig1b_skp relig2a_skp relig2b_skp relig3b_skp rexp1_grid_skp rexp2_grid_skp richpoor2_skp rr_grid_skp rural1alt1_skp rural1alt2_skp rural2alt1_skp rural2alt2_skp rural3alt1_skp rural4alt1_skp rural4alt2_skp science_skp sentence_skp serious_skp shooting_skp smoker1_skp smoker2_skp snapchat1_skp snapchat2_skp snapchat3_skp socmed_skp tall_skp taxecon_skp threat_grid_skp tiktok1_skp tiktok2_skp tiktok3_skp trade1_skp trade2_skp trade3_skp trade4_skp tsplit1_skp turnout16a_skp turnout16b_skp turnout16c_skp turnout18a_skp twitter1_skp twitter2_skp twitter3_skp ukraine1_skp ukraine2_skp unemp_skp vote16_skp vote20bs_skp vote20cand2_skp vote20cand_skp vote20dem_skp vote20ew_skp vote20jb_skp voterid1_skp voterid2_skp wall7_skp wall5_skp warm_skp nweight_skp whitejob_skp youthurban_skp youtube1_skp youtube2_skp youtube3_skp rural3alt2_skp follow_page_timing reg1a_page_timing reg1b_page_timing liveurban_page_timing youthurban_page_timing placeid1a_page_timing placeid1b_page_timing placeidimport_page_timing turnout16a_page_timing turnout16b_page_timing turnout16c_page_timing vote16_page_timing turnout18a_page_timing particip_page_timing fttrump_page_timing ftobama_page_timing ftbiden_page_timing ftwarren_page_timing ftsanders_page_timing ftbuttigieg_page_timing ftharris_page_timing ftblack_page_timing ftwhite_page_timing fthisp_page_timing ftasian_page_timing ftmuslim_page_timing ftillegal_page_timing ftimmig1_page_timing ftimmig2_page_timing ftjournal_page_timing ftnato_page_timing ftun_page_timing ftice_page_timing ftnra_page_timing ftchina_page_timing ftnkorea_page_timing ftmexico_page_timing ftsaudi_page_timing ftukraine_page_timing ftiran_page_timing ftbritain_page_timing ftgermany_page_timing ftjapan_page_timing ftisrael_page_timing ftfrance_page_timing ftcanada_page_timing ftturkey_page_timing ftrussia_page_timing ftpales_page_timing vote20dem_page_timing vote20cand_page_timing vote20cand2_page_timing electable_page_timing vote20jb_page_timing vote20ew_page_timing vote20bs_page_timing cvote2020_page_timing tsplit1_page_timing contact1a_page_timing contact1b_page_timing contact2a_page_timing contact2b_page_timing contact3_page_timing apppres5_page_timing frnpres5_page_timing immpres5_page_timing econpres5_page_timing apppres7_page_timing frnpres7_page_timing immpres7_page_timing econpres7_page_timing mip_page_timing econnow_page_timing finworry_page_timing confecon_page_timing improve1_page_timing national1_page_timing national2_page_timing conspire1_page_timing conspire2_page_timing conspire3_page_timing taxecon_page_timing billtax_page_timing trade1_page_timing trade2_page_timing trade3_page_timing trade4_page_timing richpoor2_page_timing guarinc_page_timing lc_grid_page_timing pop_grid_page_timing corrupt_page_timing immignum_page_timing refugees_page_timing dreamer_page_timing wall_page_timing wall7_page_timing path_grid_page_timing threat_grid_page_timing hlthcare1_page_timing hlthcare2_page_timing abortion1_page_timing abortion2_page_timing freecol_page_timing loans_page_timing diversity5_page_timing diversity7_page_timing language_page_timing buyback_page_timing gw_grid_page_timing knowopioid1_page_timing knowopioid2_page_timing opioiddo_page_timing sentence_page_timing prek_page_timing demo4_page_timing experts_page_timing science_page_timing exphelp_page_timing elite1_page_timing elite2_page_timing elite3_page_timing elite4_page_timing ukraine1_page_timing ukraine2_page_timing excessive_page_timing rural1alt1_page_timing rural1alt2_page_timing rural2alt1_page_timing rural2alt2_page_timing rural3alt1_page_timing rural3alt2_page_timing rural4alt1_page_timing rural4alt2_page_timing unemp_page_timing interfere_page_timing autism1_page_timing autism2_page_timing gmo1_page_timing gmo2_page_timing warm_page_timing illegal_page_timing impeach1_page_timing impeach2_page_timing pk2_intro_page_timing pk_cjus_page_timing pk_germ_page_timing pk_sen_page_timing pk_spend_page_timing pk_geer_page_timing cheat_page_timing pid1d_page_timing pid1r_page_timing pidstr_page_timing pidlean_page_timing ngun_page_timing shooting_page_timing dem_activduty_page_timing milyears_page_timing milyr_page_timing combat_page_timing harass1a_page_timing harass1b_page_timing rr_grid_page_timing health1a_page_timing health1b_page_timing hospital_page_timing tall_page_timing nweight_page_timing disable_grid_page_timing smoker1_page_timing smoker2_page_timing exercise_page_timing relig1a_page_timing relig2a_page_timing att1_page_timing att2_page_timing att3_page_timing relig1b_page_timing relig2b_page_timing relig3b_page_timing attother_page_timing exp1_grid_page_timing exp2_grid_page_timing rexp1_grid_page_timing rexp2_grid_page_timing cexp1_grid_page_timing cexp2_grid_page_timing socmed_page_timing facebook1_page_timing facebook2_page_timing facebook3_page_timing twitter1_page_timing twitter2_page_timing twitter3_page_timing instagram1_page_timing instagram2_page_timing instagram3_page_timing reddit1_page_timing reddit2_page_timing reddit3_page_timing youtube1_page_timing youtube2_page_timing youtube3_page_timing snapchat1_page_timing snapchat2_page_timing snapchat3_page_timing tiktok1_page_timing tiktok2_page_timing tiktok3_page_timing raceid_page_timing racework_page_timing whitejob_page_timing voterid1_page_timing voterid2_page_timing serious_page_timing photo1_page_timing photo2_page_timing photo3_page_timing photo4_page_timing reinterview_page_timing ord_fttrump ord_ftobama ord_ftbiden ord_ftwarren ord_ftsanders ord_ftbuttigieg ord_ftharris ord_ftblack ord_ftwhite ord_fthisp ord_ftasian ord_ftmuslim ord_ftillegal ord_ftimmig1 ord_ftimmig2 ord_ftjournal ord_ftnato ord_ftun ord_ftice ord_ftnra ord_ftchina ord_ftnkorea ord_ftmexico ord_ftsaudi ord_ftukraine ord_ftiran ord_ftbritain ord_ftgermany ord_ftjapan ord_ftisrael ord_ftfrance ord_ftcanada ord_ftturkey ord_ftrussia ord_ftpales ord_electable_1 ord_electable_2 ord_conspire1 ord_conspire2 ord_conspire3 ord_lcself ord_lcd ord_lcr ord_pathway ord_preturn ord_popen ord_release1 ord_release2 ord_famsep ord_tchina ord_trussia ord_tiran ord_tmexico ord_tjapan ord_gw1 ord_gw2 ord_elite1 ord_elite2 ord_elite3 ord_elite4 ord_disable1 ord_disable2 ord_disable3 ord_disable4 ord_disable5 ord_disable6 ord_exptravel_ever ord_exphomesch ord_expfarm ord_expffood ord_expconvert ord_expholiday ord_explie ord_expshark ord_expdivorce ord_exparrest ord_expoverdose ord_expdefault ord_exppubasst ord_exphybrid ord_expmistake ord_explightning ord_exptravel_year ord_expindian ord_exphunt ord_expflag ord_exppublib ord_explottery ord_expshoponline ord_exppubtrans ord_expfight ord_expavoid ord_expknowimmig ord_expknowtrans ord_expbuyusa ord_expretire ord_expcolldebt ord_expknowpris ord_lc_reverse ord_att2_reverse starttime endtime duration pop_density_public flag_state
0 ANES 2019 Pilot Study version 20200204 1 1.34719693063187 1.10160293017768 1 2 2 -1 3 4 1 __NA__ -1 1 1 -1 -1 -1 3 2 -1 2 2 2 2 2 2 2 2 1 47 90 52 52 49 997 50 99 99 99 100 88 79 97 -1 99 82 71 86 88 90 66 89 88 81 77 98 94 89 88 99 99 92 89 86 1 1 -1 1 2 3 4 1 2 2 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 3 5 6 2 Health Care 3 2 2 3 2 4 4 3 2 4 2 1 2 2 2 1 2 2 3 6 2 1 4 3 5 3 1 2 -1 1 -1 6 4 4 4 4 2 5 2 2 4 1 1 -1 -1 3 6 2 3 -1 2 1 -1 1 1 1 5 2 -1 1 2 4 3 4 3 4 1 3 4 1 -1 2 -1 6 -1 4 -1 4 -1 2 2 2 1 2 1 -1 1 2 -1 5 1 2 2 2 2 supreme court 0.5 chancellor of germany 1 6 1 1896 1 2 -1 __NA__ 1 __NA__ 2 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 2 5 3 2 -1 3 -1 5 7.0 167 26.1530407663177 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 -3, restricted access -1 1 4 -1 -1 -3, restricted access -1 -1 -3, restricted access 2 1 2 1 2 1 1 1 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2 1 1 -1 -1 -1 -1 -1 1 2 1 -1 -1 -1 1 2 2 2 1 1 2 2 2 __NA__ 4 4 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 4 5 4 5 5 -1 -1 -1 4 4 2 3 3 1 -1 4 -1 -1 -1 -1 1 1969 1 2 6 1 3 1 __NA__ 9 1 4 2 3 1 __NA__ 1 2 4 2 1 __NA__ 3 -3, restricted access 48 -3 -3, restricted acces 3 952 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16.589 9.859 0.000 10.154 4.701 14.499 0.000 5.820 20.567 0.000 0.000 9.181 8.710 21.348 18.756 8.893 10.590 8.145 6.211 5.852 13.662 8.236 4.700 2.560 3.830 8.659 1.679 3.532 0.000 5.137 3.904 3.249 5.800 7.497 10.249 4.214 5.650 3.823 3.182 2.453 4.631 4.221 3.878 3.864 13.908 2.109 2.791 4.533 4.073 7.851 2.061 0.000 1.581 10.187 10.604 10.280 7.675 11.450 9.791 0.000 0.0 0.000 7.406 0.000 0.000 0.000 0.000 11.550 12.644 9.552 4.790 24.282 9.484 7.464 7.862 8.550 8.196 12.529 10.322 26.776 16.807 12.225 13.644 6.283 7.447 9.175 7.214 16.818 13.215 26.492 23.471 23.151 14.269 8.762 25.964 0.000 8.449 81.175 27.595 0.000 0.000 10.938 15.648 23.579 8.986 0.000 10.292 10.475 0.000 18.166 9.738 9.304 7.880 0.000 9.317 11.263 10.350 8.196 8.431 9.988 7.999 7.395 7.857 21.232 7.656 0.000 9.238 0.000 17.678 0.000 9.944 0.000 11.431 0.000 16.626 15.182 13.521 0.000 22.262 0.000 16.507 15.448 13.736 9.093 0.000 148.197 43.565 19.686 13.172 63.358 4.055 0.000 4.712 3.661 0.000 0.000 0.000 6.431 0.0 0.000 0.000 6.640 0.000 5.461 0.000 12.976 0.000 11.782 11.122 0.000 0.000 0.000 0.000 27.980 0.0 10.877 11.099 0.000 0.000 0.000 0.000 11.208 42.442 0.000 20.666 0.000 15.841 0.000 12.346 6.977 7.873 6.404 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 4.989 5.937 3.575 6.285 8.925 4.660 0.0 0.0 0.0 7.330 8.978 7.691 6.749 0.000 11.122 0.000 0.000 0.000 0.000 8.620 1 2 3 5 7 6 4 8 11 12 10 9 14 0 15 19 18 17 16 27 22 23 25 24 33 32 20 21 30 26 34 31 29 28 1 2 1 3 2 1 3 2 1 2 3 4 5 6 1 2 5 4 3 2 1 3 1 4 2 1 7 4 8 5 6 2 3 1 5 2 4 3 1 3 2 0 1 12/31/2019 18:57:33 12/31/2019 19:39:49 2536 1520 0
1 ANES 2019 Pilot Study version 20200204 2 .780822076219216 .638478211724453 1 1 1 -1 3 3 2 __NA__ -1 2 1 -1 -1 -1 1 1 -1 2 2 2 2 2 2 2 2 1 41 30 41 17 31 30 29 91 96 92 93 93 25 94 -1 67 86 78 91 93 44 19 93 25 82 22 89 91 94 71 66 100 20 25 77 2 -1 2 -1 1 1 1 2 3 2 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 5 3 2 1 Working together 1 2 2 3 2 4 2 5 3 2 5 2 2 2 2 4 6 6 1 7 2 2 4 3 2 3 1 2 -1 1 -1 2 2 2 2 4 4 4 5 4 3 1 1 -1 -1 3 1 5 6 -1 1 1 -1 1 1 2 -1 2 -1 3 2 4 4 4 3 3 1 2 1 1 -1 2 -1 5 -1 4 -1 4 -1 5 2 4 1 5 2 -1 2 1 -1 5 1 4 2 7 7 chief justice supremer court 1.0 germany chanceller 1 6 4 -7 2 6 2 __NA__ -1 __NA__ 2 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 2 2 4 2 3 -1 -1 5 10.0 235 33.715306122449 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -3, restricted access -1 1 1 1 -1 -3, restricted access -1 -1 -3, restricted access 1 1 2 2 2 2 1 1 2 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1 2 1 -1 -1 -1 1 2 2 2 1 2 2 2 2 __NA__ 4 2 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 5 5 -1 -1 -1 -1 -1 -1 2 4 2 1 1 1 -1 5 -1 -1 -1 -1 1 1942 1 6 1 2 1 5 __NA__ 10 1 4 6 1 2 __NA__ 2 1 2 2 2 __NA__ -7 -3, restricted access 1 -3 -3, restricted acces 3 1851 102 8 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.260 4.491 0.000 4.347 4.402 7.792 0.000 7.883 9.701 0.000 0.000 4.269 4.675 13.778 12.653 4.982 3.735 3.534 2.999 4.752 3.720 5.888 3.343 3.709 3.461 3.497 2.850 2.800 0.000 4.368 3.392 4.289 5.103 3.714 3.830 3.684 3.034 3.203 4.249 3.204 4.261 2.965 3.921 3.944 3.005 3.957 2.563 2.851 5.058 10.103 0.000 16.162 0.000 5.488 2.545 4.166 3.917 7.401 15.224 0.000 0.0 0.000 9.504 0.000 0.000 0.000 0.000 8.313 9.936 18.458 2.612 17.717 14.047 12.074 8.786 16.296 8.308 14.036 10.536 11.471 41.226 17.611 12.546 15.419 9.987 11.953 9.101 47.424 23.917 23.035 22.959 19.200 14.184 17.988 28.093 0.000 9.900 59.269 31.066 0.000 0.000 9.629 8.167 26.090 5.929 0.000 12.640 8.760 0.000 19.786 12.204 0.000 11.883 0.000 9.104 20.069 13.238 9.484 8.421 7.949 10.471 9.505 12.731 9.809 10.753 0.000 10.894 0.000 17.091 0.000 14.769 0.000 22.217 0.000 16.001 10.516 6.040 0.000 10.127 0.000 7.370 12.535 12.185 13.065 0.000 41.833 19.554 12.117 18.485 21.098 16.150 6.339 0.000 2.188 0.000 0.000 0.000 4.077 0.0 0.000 0.000 8.858 0.000 48.761 4.232 0.000 0.000 8.812 7.203 0.000 0.000 0.000 0.000 2.755 0.0 14.926 12.028 7.928 0.000 0.000 0.000 8.769 27.447 0.000 16.748 0.000 35.828 0.000 7.674 7.823 9.306 6.101 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 6.035 9.364 8.051 0.000 0.000 0.000 0.0 0.0 0.0 8.698 13.225 14.061 5.518 0.000 14.695 0.000 0.000 0.000 0.000 7.927 1 2 3 6 5 4 7 8 9 10 12 11 14 0 15 17 16 18 19 21 27 24 28 22 32 34 23 20 31 30 26 33 29 25 2 3 1 1 3 2 3 2 1 4 5 6 1 3 2 5 4 1 2 3 1 2 4 8 5 7 4 3 1 6 2 5 2 1 4 3 1 2 3 0 1 12/21/2019 4:19:56 12/21/2019 4:53:19 2003 1800 0
2 ANES 2019 Pilot Study version 20200204 3 .966366930694957 .790198239229266 1 1 1 -1 1 4 1 __NA__ -1 4 1 -1 -1 -1 2 1 -1 1 2 2 2 2 1 2 1 2 0 91 88 15 60 70 68 48 49 49 49 50 39 69 -1 63 66 51 40 2 2 2 1 3 59 1 50 1 1 1 51 87 50 1 3 1 1 -1 1 2 3 2 1 2 2 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 7 7 7 7 health care 4 5 5 7 1 1 5 4 1 7 1 1 3 3 1 1 4 4 4 7 2 2 5 5 4 4 2 2 -1 2 -1 7 3 1 5 5 5 5 5 5 5 5 5 -1 -1 3 7 6 7 -1 1 5 -1 1 1 2 -1 1 -1 1 6 3 3 5 5 1 1 5 5 1 -1 2 -1 4 -1 4 -1 4 -1 2 2 5 1 1 2 -1 3 1 -1 5 1 5 2 1 1 don't know 0.0 don't know 0 4 4 1960 2 1 1 __NA__ -1 __NA__ 1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 1 5 4 1 2 -1 -1 5 4.0 160 27.4609375 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -3, restricted access -1 1 1 1 -1 -3, restricted access -1 -1 -3, restricted access 1 2 2 2 2 2 1 1 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2 2 1 -1 -1 -1 -1 -1 1 2 1 -1 -1 -1 1 2 2 2 2 2 2 2 2 __NA__ 1 1 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 5 3 1 1 1 -1 5 -1 -1 -1 -1 1 1954 2 2 1 2 1 1 __NA__ 8 1 3 1 2 1 __NA__ 2 1 2 2 2 __NA__ -7 -3, restricted access 37 -3 -3, restricted acces 3 1576 249 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10.393 4.406 0.000 5.095 5.183 9.068 0.000 7.562 20.654 0.000 0.000 3.642 8.004 52.884 14.342 8.833 5.336 6.344 9.386 7.735 7.817 4.727 4.530 6.723 4.873 6.401 11.542 7.602 0.000 5.969 6.955 10.404 20.956 9.733 4.223 5.717 5.417 6.487 9.220 3.874 13.394 4.204 8.374 4.453 5.695 4.635 4.992 6.135 5.758 5.716 6.970 0.000 33.173 7.789 12.756 9.381 10.139 5.447 19.189 0.000 0.0 0.000 10.866 0.000 0.000 0.000 0.000 8.407 5.273 4.474 4.124 19.337 17.748 6.833 5.940 30.722 20.596 13.606 12.951 9.781 37.086 11.142 11.334 15.668 17.238 25.370 13.978 10.143 72.549 15.953 34.345 15.078 21.909 18.511 29.479 0.000 8.484 88.518 19.246 0.000 0.000 28.604 9.095 26.145 11.639 0.000 24.933 12.824 0.000 22.079 24.131 0.000 7.846 0.000 15.807 24.690 36.809 17.871 14.538 9.213 21.222 6.331 6.392 7.599 8.802 0.000 26.009 0.000 11.535 0.000 9.976 0.000 12.721 0.000 28.735 8.838 12.885 0.000 15.169 0.000 11.453 17.480 12.401 8.518 0.000 24.951 14.769 21.653 19.182 19.827 6.654 0.000 0.000 0.000 0.000 0.000 0.000 7.439 0.0 0.000 0.000 12.501 0.000 47.529 7.273 0.000 0.000 5.697 5.141 0.000 0.000 0.000 0.000 3.550 0.0 9.917 3.977 6.014 0.000 0.000 0.000 4.070 30.007 0.000 18.690 0.000 20.602 0.000 4.427 4.098 7.478 5.348 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 0.0 0.0 20.608 39.129 16.251 7.152 0.000 10.665 0.000 0.000 0.000 0.000 9.366 1 2 4 6 5 3 7 10 12 8 9 11 14 0 15 17 16 19 18 27 30 23 22 25 32 20 34 29 26 21 24 33 31 28 1 2 2 3 1 1 2 3 2 3 1 4 5 6 4 5 1 3 2 1 2 2 1 4 3 4 5 6 3 2 8 7 1 2 5 1 3 4 3 2 1 0 0 12/22/2019 23:03:28 12/22/2019 23:41:43 2295 70 0
3 ANES 2019 Pilot Study version 20200204 4 1.10348514780374 .902319805359118 2 1 -1 1 4 4 -1 __NA__ 1 2 -1 -1 -1 1 2 1 -1 2 2 2 2 2 2 2 2 1 100 50 0 0 0 0 0 0 0 0 0 0 0 -1 100 25 75 75 75 100 25 50 15 50 50 15 85 10 85 50 75 50 75 25 0 3 -1 -1 -1 1 1 1 5 4 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 The economy. 4 1 2 3 2 3 3 1 2 3 4 1 2 3 2 3 4 4 4 4 3 3 3 3 3 1 1 2 -1 1 -1 1 1 1 2 1 5 3 -1 -1 -1 -1 -1 3 1 -1 -1 3 2 -1 4 3 2 3 4 2 -1 4 1 2 4 3 5 2 2 2 2 3 3 1 5 -1 4 -1 4 -1 4 -1 4 2 1 1 2 1 -1 1 3 -1 1 1 1 1 2 4 4 senator 0.0 congress 0 2 4 2018 2 1 1 __NA__ -1 __NA__ 1 -1 0 2 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 2 4 5 3 -1 5 1 5 7.0 130 20.3586544887503 2 2 2 2 2 1 1 2 1 -1 -3, restricted access -1 2 -1 -1 -1 -3, restricted access 1 4 -3, restricted access -1 -1 -1 -1 -1 -1 -1 -1 -1 2 1 2 2 2 2 1 2 -1 -1 -1 -1 -1 2 1 1 2 2 -1 -1 -1 2 2 2 1 1 1 2 1 1 2 2 2 __NA__ 5 4 5 6 4 5 7 5 5 -1 -1 -1 6 5 5 7 5 5 -1 -1 -1 3 3 2 2 2 -1 1 5 3 2 1 1 1 1979 1 3 5 2 2 4 __NA__ 1 1 3 1 2 1 __NA__ 2 1 6 6 1 __NA__ 1 -3, restricted access 34 -3 -3, restricted acces 1 449 316 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.355 0.000 3.015 5.634 4.752 0.000 6.117 6.117 0.000 0.000 25.453 3.205 8.434 19.452 6.123 4.024 7.260 4.035 8.174 4.913 2.623 2.955 5.917 3.436 5.724 5.769 7.385 0.000 8.174 17.756 3.771 0.898 15.432 4.706 8.266 5.902 0.105 8.623 0.298 0.344 8.744 8.606 0.306 0.233 0.118 3.571 0.185 0.139 0.137 19.703 0.000 0.000 0.000 9.573 11.093 13.510 14.088 17.716 0.000 10.595 0.0 0.000 0.000 0.000 0.000 0.000 0.000 5.296 2.995 2.697 3.050 9.228 9.225 5.702 4.036 7.313 7.280 11.251 9.825 10.956 11.436 10.477 11.462 8.520 8.410 8.445 7.809 8.006 27.961 20.960 17.817 12.307 9.984 10.863 13.238 0.000 6.591 53.585 0.000 9.050 5.992 0.000 0.000 13.343 12.444 0.000 16.436 5.801 13.328 15.890 9.343 0.000 7.042 20.790 13.362 9.483 5.976 6.921 12.258 3.463 5.331 9.523 7.178 9.529 10.555 6.688 0.000 7.251 0.000 8.888 0.000 7.974 0.000 5.905 13.807 12.798 0.000 13.145 0.000 6.747 8.651 10.521 14.677 12.310 10.861 9.252 19.042 8.109 7.307 22.516 4.401 2.958 0.000 2.324 0.000 4.068 7.710 10.894 0.0 0.000 0.000 0.000 6.439 24.644 0.000 5.466 11.519 7.414 5.397 13.889 2.892 3.793 3.624 0.000 0.0 12.653 0.000 0.000 0.000 5.653 9.921 0.000 0.000 30.724 0.000 15.845 0.000 16.906 8.749 6.571 5.427 2.759 6.433 5.193 3.908 3.845 9.878 3.745 0.00 0.000 0.000 5.210 5.191 3.118 3.128 2.727 1.686 0.0 0.0 0.0 3.603 6.559 5.987 0.000 8.355 11.791 7.147 5.023 5.635 3.662 5.399 1 2 6 7 4 3 5 11 9 8 10 12 0 14 15 18 19 16 17 31 30 22 32 28 26 34 29 25 27 20 33 24 21 23 1 3 2 1 2 3 1 3 2 4 5 6 2 1 2 4 1 3 2 5 1 4 6 3 5 6 7 4 3 2 1 8 1 5 4 3 2 2 3 1 0 0 12/31/2019 19:53:14 12/31/2019 20:23:11 1797 7600 0
4 ANES 2019 Pilot Study version 20200204 5 1.09069730256741 .891863184309371 2 1 -1 1 4 2 -1 __NA__ 1 2 -1 -1 -1 1 1 1 -1 2 1 2 1 2 1 1 1 2 94 18 25 1 10 16 7 93 94 94 94 50 9 -1 92 20 68 16 94 84 23 29 50 51 49 5 73 44 72 97 58 96 60 45 45 2 -1 2 -1 1 1 1 2 3 -1 1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 China 1 1 1 3 1 3 3 3 4 1 6 1 2 2 2 5 7 6 1 6 1 1 5 4 4 3 2 2 -1 2 -1 1 4 2 5 3 2 3 -1 -1 -1 -1 -1 7 1 -1 -1 7 7 -1 2 1 7 3 3 2 -1 2 3 6 3 1 2 3 1 1 1 1 2 1 3 -1 6 -1 4 -1 4 -1 6 5 2 3 1 4 -1 2 2 -1 2 2 1 3 1 7 7 supreme court justice 0.5 german government 1 6 3 1945 2 5 3 __NA__ -1 __NA__ -1 1 0 2 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 2 2 5 3 2 -1 1 5 4.0 115 19.737548828125 1 2 2 2 2 2 1 3 1 -1 -3, restricted access -1 1 2 -1 1 -3, restricted access -1 -1 -3, restricted access -1 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2 2 2 2 1 2 -1 -1 -1 -1 -1 2 2 2 2 1 -1 -1 -1 1 2 2 1 2 2 2 1 2 2 2 2 __NA__ 2 4 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 4 5 -1 -1 -1 -1 -1 -1 2 1 2 1 1 -1 1 5 1 1 1 1 1 1940 2 6 4 2 1 2 __NA__ 4 1 4 5 1 2 __NA__ 1 2 2 2 1 __NA__ 8 -3, restricted access 48 -3 -3, restricted acces 3 1458 114 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.650 0.000 5.215 8.832 7.189 0.000 14.528 18.620 0.000 0.000 15.916 9.759 9.539 36.795 23.543 16.482 12.024 7.980 13.030 15.878 5.829 8.313 27.213 9.984 7.684 20.659 10.477 0.000 7.723 6.285 11.818 7.484 9.420 13.706 8.573 9.659 6.841 9.907 8.938 7.456 6.822 9.949 10.211 7.729 11.479 16.550 25.597 10.016 8.424 7.267 0.000 6.899 0.000 7.568 5.653 6.144 7.263 13.493 0.000 18.915 0.0 5.855 0.000 0.000 0.000 0.000 0.000 7.106 7.472 5.876 4.771 12.012 7.335 5.810 4.144 25.072 5.327 12.318 11.809 15.418 12.966 11.500 13.556 10.114 14.232 6.407 9.205 13.196 9.442 23.755 19.737 7.286 27.185 20.099 25.152 0.000 14.288 60.303 0.000 9.405 8.757 0.000 0.000 16.253 12.081 0.000 19.039 15.935 22.264 36.410 8.487 0.000 27.085 18.716 22.277 22.396 9.082 18.881 10.559 11.392 8.088 6.894 11.185 16.819 11.196 9.384 0.000 9.897 0.000 8.123 0.000 7.764 0.000 13.198 9.493 13.591 0.000 9.258 0.000 12.838 18.180 11.142 12.765 18.178 7.661 24.172 14.766 7.403 31.376 10.408 5.901 6.121 0.000 0.000 5.075 8.438 12.465 8.864 0.0 0.000 0.000 0.000 8.179 50.590 4.953 0.000 9.559 10.113 6.883 31.148 4.872 11.640 10.414 0.000 0.0 10.178 7.629 0.000 5.266 0.000 0.000 0.000 0.000 23.919 0.000 27.860 0.000 11.717 9.191 7.747 12.386 7.801 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 8.335 7.852 6.884 0.000 0.000 0.000 0.0 0.0 0.0 18.744 17.437 10.886 0.000 10.790 10.326 28.427 13.455 10.683 7.614 6.967 1 2 4 5 6 3 7 12 11 9 10 8 0 14 15 16 17 18 19 26 34 29 31 20 27 30 22 33 32 28 24 25 23 21 1 2 3 1 3 2 1 3 2 4 5 6 1 2 1 3 4 2 6 3 2 5 1 4 6 2 1 8 5 4 3 7 3 2 4 1 5 2 1 3 0 1 12/21/2019 4:07:09 12/21/2019 4:48:50 2501 4430 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3160 ANES 2019 Pilot Study version 20200204 3161 2 1 -1 1 2 2 -1 __NA__ 3 5 -1 -1 1 -1 1 1 -1 2 2 2 2 1 2 2 1 2 81 20 7 4 6 1 2 94 94 94 95 21 31 -1 85 11 30 16 95 91 26 10 22 20 30 4 70 19 90 60 61 60 10 25 10 3 -1 -1 -1 1 1 1 2 3 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 2 5 2 The infiltration of Marxists into the institut... 2 2 2 6 2 2 4 2 3 2 7 2 5 1 4 5 7 6 1 4 3 2 4 4 6 5 2 1 2 -1 -1 2 5 1 5 1 1 2 -1 -1 -1 -1 -1 7 3 -1 -1 7 7 -1 6 1 7 5 5 2 -1 3 4 7 4 2 2 2 4 4 1 2 3 2 3 -1 4 -1 4 -1 7 -1 7 4 2 4 1 2 -1 2 3 -1 1 3 1 3 2 7 7 chief justice of the supreme court of the unit... 1.0 germany's head of state (chancellor?) 1 6 1 1998 2 5 3 __NA__ -1 __NA__ -1 1 20 1 2 -1 2 2 1 1 2 2 1 -1 2 2 4 5 2 -1 2 2 6 0.0 248 33.6312 1 2 2 2 2 2 2 -1 3 -1 -3, restricted access -1 1 2 -1 1 -3, restricted access -1 -1 -3, restricted access -1 -1 -1 -1 -1 -1 -1 -1 -1 2 2 1 2 2 2 1 2 -1 -1 -1 -1 -1 1 1 2 2 2 -1 -1 -1 1 2 2 2 2 2 2 1 2 2 2 2 __NA__ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 4 5 -1 -1 -1 -1 -1 -1 2 5 5 1 1 -1 2 5 -1 -1 -1 -1 1 1948 1 4 5 2 1 5 __NA__ 11 1 4 5 1 2 __NA__ 1 1 2 1 1 __NA__ 3 -3, restricted access 41 -3 -3, restricted acces 4 2012 376 7 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12.658 0.000 5.778 5.783 6.036 0.000 12.642 5.884 0.000 8.795 0.000 4.466 13.156 28.332 14.782 7.416 11.474 4.640 4.339 5.535 7.655 6.589 4.458 5.938 7.065 6.149 7.974 0.000 6.836 5.705 4.740 5.174 7.268 5.181 4.495 8.080 4.128 4.693 4.255 3.599 3.672 8.122 4.087 4.636 4.553 4.947 4.711 4.298 7.147 10.580 0.000 0.000 0.000 8.537 5.442 4.295 6.421 16.741 0.000 27.493 0.0 0.000 0.000 0.000 0.000 0.000 0.000 11.004 8.919 10.577 6.670 181.083 9.471 10.258 5.928 12.634 6.665 15.102 8.540 19.486 19.554 11.058 12.564 12.333 13.571 12.483 23.473 14.276 14.281 24.805 20.130 7.045 11.666 15.988 34.446 0.000 22.897 104.110 0.000 12.347 6.914 0.000 0.000 9.177 11.000 0.000 9.985 9.245 13.400 67.957 14.667 0.000 15.250 15.053 13.159 12.076 10.769 9.022 15.833 5.796 9.754 6.787 16.760 59.903 9.880 6.719 0.000 23.071 0.000 13.098 0.000 14.039 0.000 14.180 18.466 15.172 0.000 16.742 0.000 13.711 12.713 17.519 13.952 15.393 31.516 34.917 32.466 5.650 8.289 12.633 6.331 0.000 0.000 0.000 0.000 12.628 9.736 8.337 0.0 24.381 7.364 0.000 7.137 50.250 0.000 14.375 9.096 8.322 5.567 20.771 3.527 0.000 9.397 0.000 0.0 12.456 5.092 0.000 2.991 0.000 0.000 0.000 0.000 28.867 0.000 46.919 0.000 21.846 12.689 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 5.233 11.940 4.548 0.000 0.000 0.000 0.0 0.0 0.0 7.990 8.240 10.123 0.000 10.628 13.336 0.000 0.000 0.000 0.000 7.247 1 2 3 6 7 5 4 9 10 11 8 12 0 14 15 18 17 19 16 20 22 34 21 24 27 32 29 26 25 33 31 30 28 23 3 2 1 1 2 3 3 2 1 4 5 6 2 1 2 1 3 4 4 3 2 6 1 5 2 7 4 5 3 6 8 1 1 5 3 2 4 2 3 1 0 0 12/31/2019 19:38:13 12/31/2019 20:24:56 2803
3161 ANES 2019 Pilot Study version 20200204 3162 7.03646496881757 5.75371740500213 2 1 -1 2 4 3 -1 __NA__ 2 2 -1 -1 1 -1 3 2 -1 2 2 2 1 1 2 2 1 2 35 41 25 61 92 3 1 45 56 53 69 11 3 -1 50 52 40 55 50 7 20 6 26 1 55 2 60 60 56 50 66 80 50 31 50 1 6 -1 1 3 2 2 5 4 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 7 2 5 Lack of basic resources being provided and off... 3 5 5 7 4 4 5 3 3 6 1 3 4 2 3 1 1 4 1 7 2 1 5 5 5 5 2 2 -1 2 -1 4 3 2 5 3 5 3 -1 -1 -1 -1 -1 1 5 -1 -1 3 2 -1 5 3 5 1 3 1 2 2 4 3 7 3 3 4 5 5 1 5 5 1 4 -1 4 -1 5 -1 3 -1 4 3 2 3 2 5 -1 2 4 -1 1 5 1 2 2 4 4 no clue 0.0 german president 1 6 1 -7 2 3 3 __NA__ -1 __NA__ -1 2 0 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 2 3 5 3 -1 3 1 5 10.5 189 26.7325 2 2 1 2 2 1 2 -1 3 -1 -3, restricted access -1 2 -1 -1 -1 -3, restricted access 2 -1 -3, restricted access -1 -1 -1 -1 -1 -1 -1 -1 -1 2 1 1 2 1 2 1 2 -1 -1 -1 -1 -1 2 2 2 1 1 -1 -1 -1 2 2 2 2 2 2 1 1 2 2 2 2 __NA__ -1 -1 -1 -1 -1 -1 -1 -1 -1 4 3 4 1 1 2 -1 -1 -1 -1 -1 -1 1 2 3 1 1 -1 3 5 -1 -1 -1 -1 1 1996 1 2 5 2 1 6 __NA__ 2 1 6 3 1 7 __NA__ 2 4 6 7 9 __NA__ -7 -3, restricted access 45 -3 -3, restricted acces 3 185 43 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.206 0.000 7.676 10.548 5.611 0.000 8.851 7.265 0.000 6.931 0.000 2.264 13.780 18.855 18.700 5.598 14.185 8.829 15.345 4.423 4.170 10.773 9.436 8.375 8.106 4.082 9.835 0.000 4.260 3.779 5.621 7.558 4.840 3.928 5.125 7.228 5.117 7.930 3.783 4.570 4.545 7.165 8.701 5.656 5.030 6.814 3.597 4.896 5.006 6.276 7.231 0.000 8.906 8.610 7.301 4.463 9.899 15.497 0.000 11.230 0.0 0.000 0.000 0.000 0.000 0.000 0.000 8.513 6.346 4.092 7.925 136.102 8.319 6.427 3.097 6.488 5.003 7.355 9.124 5.540 7.153 8.038 13.826 9.944 5.596 4.491 23.326 8.556 29.241 17.261 15.479 7.747 7.028 8.460 8.868 0.000 4.358 76.265 0.000 14.162 9.167 0.000 0.000 18.278 6.011 0.000 11.778 13.489 13.199 14.620 4.936 9.199 4.298 24.503 3.680 12.700 10.252 5.263 6.803 2.824 3.600 5.110 4.489 6.302 4.786 3.727 0.000 6.428 0.000 10.008 0.000 10.775 0.000 5.677 13.644 5.738 0.000 7.512 0.000 15.623 10.582 12.633 5.995 13.181 6.796 15.602 80.627 2.802 74.741 2.986 8.375 0.000 0.000 0.000 0.000 3.676 5.726 7.888 0.0 0.000 0.000 0.000 6.361 39.550 0.000 5.036 4.929 7.875 7.979 24.003 2.484 0.000 3.940 0.000 0.0 8.726 0.000 0.000 0.000 3.422 0.000 0.000 0.000 23.377 0.000 12.742 0.000 7.413 15.292 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.87 5.851 6.339 2.933 3.589 3.480 0.000 0.000 0.000 0.0 0.0 0.0 5.320 6.632 4.129 0.000 8.689 14.486 0.000 0.000 0.000 0.000 6.529 1 2 4 3 5 6 7 11 8 10 12 9 0 14 15 18 17 16 19 28 24 27 30 33 31 20 25 23 22 32 29 34 26 21 2 1 1 3 2 1 3 2 2 3 1 4 5 6 1 2 2 3 4 1 5 4 2 1 3 6 1 8 3 6 7 4 5 2 2 5 3 4 1 2 3 1 0 1 12/31/2019 20:14:34 12/31/2019 20:53:50 2356 1800 0
3162 ANES 2019 Pilot Study version 20200204 3163 .892833236147303 .73006973719765 2 3 -1 3 4 1 -1 __NA__ 4 3 -1 -1 2 -1 -1 2 -1 2 2 2 2 2 2 2 2 1 6 31 50 2 59 0 31 88 100 100 100 60 100 -1 100 51 3 60 94 41 100 60 100 78 40 59 100 72 99 99 99 100 51 41 87 3 -1 -1 -1 4 4 4 4 4 -1 2 -1 -1 -1 -1 -1 -1 5 5 5 5 -1 -1 -1 -1 donald trump 2 5 4 6 1 5 5 1 1 1 7 5 4 2 2 1 7 7 4 4 5 5 5 1 7 7 1 2 -1 1 5 -1 5 5 5 5 1 5 -1 -1 -1 -1 -1 1 5 -1 -1 7 7 1 -1 1 7 5 5 2 -1 1 1 1 4 5 5 5 1 5 1 5 5 1 2 -1 1 -1 1 -1 1 -1 1 1 2 3 1 5 -1 2 5 -1 2 1 2 3 1 7 7 no 0.0 chancellor of europe 1 2 1 1444 2 4 -1 __NA__ -1 __NA__ -1 3 0 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 1 1 3 3 3 -1 1 7 5.0 175 15.5315 2 2 1 2 1 1 2 -1 2 -1 -3, restricted access -1 1 2 -1 3 -3, restricted access -1 -1 -3, restricted access -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 2 1 1 2 1 2 -1 -1 -1 -1 -1 2 2 1 2 2 -1 -1 -1 2 1 2 1 1 1 2 2 2 2 2 2 __NA__ 1 1 5 7 5 5 7 5 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 5 3 3 3 -1 2 5 -1 -1 -1 -1 1 1980 1 4 1 2 3 2 __NA__ 4 2 2 4 7 7 __NA__ 2 1 1 1 1 __NA__ 3 -3, restricted access 47 -3 -3, restricted acces 3 179 156 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.171 0.000 4.744 5.487 9.117 0.000 11.729 17.977 0.000 4.232 0.000 0.000 4.955 4.118 13.230 7.743 6.538 5.253 6.740 7.512 3.692 7.074 8.041 6.904 8.615 7.851 5.253 0.000 4.181 3.884 4.136 4.484 6.832 5.209 3.727 9.289 5.675 4.046 4.884 5.471 4.010 6.924 4.154 4.677 4.877 4.444 5.091 3.690 4.879 3.157 0.000 0.000 0.000 3.565 2.815 2.423 3.292 3.182 0.000 3.111 0.0 0.000 0.000 4.075 3.729 3.661 2.817 0.000 0.000 0.000 0.000 14.868 4.227 3.807 4.957 4.420 3.858 12.512 3.739 5.764 7.959 7.423 4.858 4.506 4.239 6.822 3.527 3.324 4.559 8.038 6.835 3.517 13.014 6.245 13.085 5.254 0.000 14.771 0.000 3.734 2.392 0.000 0.000 2.039 4.682 7.654 0.000 12.898 7.020 5.208 4.205 0.000 5.766 4.442 8.525 5.126 3.792 3.755 3.969 4.736 5.764 4.824 9.553 6.415 4.100 7.151 0.000 3.328 0.000 3.266 0.000 7.566 0.000 3.913 10.925 10.081 0.000 8.310 0.000 9.105 6.381 7.238 4.501 2.297 1.720 10.167 22.402 5.258 11.603 9.610 3.496 0.000 0.000 0.000 0.000 9.293 5.065 4.192 0.0 0.000 0.000 0.000 10.153 23.828 3.930 0.000 4.101 13.219 6.197 15.415 4.411 0.000 6.875 0.000 0.0 6.199 5.176 0.000 4.704 0.000 0.000 0.000 0.000 25.929 0.000 12.167 0.000 10.375 4.302 3.099 2.531 3.725 3.716 4.002 2.135 3.862 3.258 1.885 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 0.0 0.0 4.102 5.759 11.928 0.000 5.281 15.987 0.000 0.000 0.000 0.000 5.334 1 2 6 4 5 3 7 10 12 8 9 11 0 14 15 16 19 17 18 26 23 28 27 31 34 30 24 25 20 21 32 29 33 22 1 2 3 1 3 2 2 1 3 4 5 6 2 1 2 3 4 1 4 6 3 5 1 2 7 3 4 5 1 8 2 6 3 2 5 4 1 3 1 2 0 1 12/31/2019 20:10:04 12/31/2019 20:29:15 1151 200 0
3163 ANES 2019 Pilot Study version 20200204 3164 1.58161278448241 1.29328477387127 2 1 -1 3 3 4 -1 __NA__ 2 4 -1 -1 2 -1 -1 2 -1 2 2 2 2 2 2 2 2 1 1 100 95 62 79 59 51 100 65 50 52 50 51 -1 49 91 84 72 59 0 54 0 62 0 60 0 73 55 50 1 56 89 0 0 1 1 1 -1 2 2 3 2 1 2 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 7 7 7 4 Donald Trump 3 4 3 5 1 3 4 5 5 6 2 1 4 3 4 3 2 2 2 4 1 1 4 5 4 3 2 2 -1 2 -1 7 2 3 2 4 2 4 -1 -1 -1 -1 -1 3 5 -1 -1 4 5 -1 4 5 1 1 3 2 -1 1 5 2 1 4 5 4 5 5 2 5 5 1 3 -1 3 -1 5 -1 5 -1 5 2 2 5 1 5 -1 2 5 -1 2 5 1 5 2 1 1 republican party 0.0 not sure 0 4 4 1970 2 2 -1 __NA__ 1 __NA__ 2 -1 0 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 1 3 3 2 3 -1 1 5 11.0 190 26.4967 2 2 2 2 2 2 1 1 3 -1 -3, restricted access -1 2 -1 -1 -1 -3, restricted access 2 -1 -3, restricted access -1 -1 -1 -1 -1 -1 -1 -1 -1 2 1 2 2 2 2 1 2 -1 -1 -1 -1 -1 1 2 2 2 2 -1 -1 -1 2 2 2 2 2 2 2 1 2 2 2 2 __NA__ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 4 5 -1 -1 -1 -1 -1 -1 5 5 1 2 2 -1 2 5 -1 -1 -1 -1 1 1960 1 1 1 2 2 4 __NA__ 1 2 2 2 1 7 __NA__ 2 2 6 7 11 __NA__ -7 -3, restricted access 6 -3 -3, restricted acces 4 1072 1117 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22.776 0.000 5.979 7.954 19.452 0.000 12.340 10.267 0.000 23.684 0.000 0.000 15.141 17.413 13.859 10.821 4.535 7.973 4.811 7.034 4.996 4.527 3.683 4.917 9.405 5.766 6.478 0.000 8.614 5.032 5.439 4.327 8.170 4.455 3.603 5.639 3.643 10.550 4.175 8.272 5.764 3.426 4.688 4.580 5.099 4.287 4.478 4.883 4.066 16.823 19.913 0.000 34.058 9.328 9.508 3.291 8.991 44.269 0.000 21.831 0.0 0.000 0.000 0.000 0.000 0.000 0.000 11.710 8.499 7.077 6.332 51.329 14.182 13.553 8.190 17.121 10.773 18.920 11.721 13.302 17.977 17.030 11.952 8.882 14.055 7.388 15.926 11.318 40.049 39.888 29.432 10.023 18.666 12.519 13.439 0.000 8.737 54.015 0.000 18.292 17.948 0.000 0.000 18.384 13.031 0.000 18.828 9.921 13.785 17.596 7.415 0.000 9.176 18.835 13.171 10.482 19.440 9.917 15.687 9.472 7.964 9.106 8.164 13.930 10.141 11.132 0.000 12.841 0.000 26.118 0.000 11.323 0.000 9.259 44.698 10.561 0.000 32.948 0.000 13.943 9.923 10.111 11.093 11.843 7.698 135.410 19.693 6.403 34.352 16.268 10.749 0.000 0.000 0.000 0.000 8.387 7.313 5.852 0.0 0.000 0.000 0.000 20.717 33.046 7.973 0.000 16.569 9.735 6.780 23.313 3.822 4.375 6.345 0.000 0.0 11.195 0.000 0.000 0.000 10.963 0.000 0.000 0.000 34.899 0.000 15.704 0.000 9.907 5.757 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 5.548 14.599 5.226 0.000 0.000 0.000 0.0 0.0 0.0 4.902 9.533 14.596 0.000 6.922 18.059 0.000 0.000 0.000 0.000 13.644 1 2 6 3 4 7 5 10 12 9 11 8 0 14 15 19 16 18 17 34 20 30 26 32 23 24 31 33 29 22 25 21 28 27 1 2 2 3 1 1 3 2 2 3 1 4 5 6 2 1 1 3 2 4 2 5 6 3 1 4 1 4 2 6 7 3 5 8 4 1 2 3 5 2 1 3 0 0 12/31/2019 22:10:05 12/31/2019 22:52:37 2552 6600 0
3164 ANES 2019 Pilot Study version 20200204 3165 .809576969671362 .661991088100273 1 2 1 -1 2 4 2 __NA__ -1 1 1 -1 -1 -1 2 1 -1 2 2 2 2 2 2 2 2 1 0 100 70 51 100 100 39 100 0 100 100 99 100 100 -1 98 100 98 2 0 99 98 98 99 96 100 100 99 100 97 99 98 98 98 99 1 3 -1 2 2 2 2 1 2 2 -1 -1 -1 2 -1 -1 -1 5 5 5 5 -1 -1 -1 -1 trump 5 5 5 7 5 3 3 3 1 7 7 3 3 3 1 1 7 6 6 2 1 1 1 3 2 2 1 2 -1 1 5 -1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 3 4 7 7 5 -1 1 -1 1 1 2 -1 4 -1 4 4 3 3 3 5 5 5 5 5 2 -1 2 -1 7 -1 7 -1 7 -1 5 1 5 1 5 1 -1 5 1 -1 5 1 5 1 7 7 0.0 ///////////// 0 4 4 1950 2 1 -1 __NA__ 1 __NA__ 1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 5 5 1 5 -1 3 -1 6 0.0 310 42.039 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -3, restricted access -1 2 -1 -1 -1 -3, restricted access -1 -1 -3, restricted access -1 2 2 2 1 2 2 2 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 1 2 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 2 2 2 2 2 2 2 2 1 __NA__ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 5 1 5 5 1 -1 5 -1 -1 -1 -1 1 1960 1 2 1 2 5 1 __NA__ 5 1 3 1 2 1 __NA__ 2 1 6 2 2 __NA__ -7 -3, restricted access 15 -3 -3, restricted acces 4 716 455 9 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.733 6.713 0.000 10.621 7.110 18.052 0.000 12.675 21.724 0.000 0.000 2.929 8.263 19.129 12.883 12.828 7.378 12.400 7.377 5.027 6.363 4.359 12.839 8.849 6.745 6.412 3.484 6.198 0.000 6.742 6.963 8.125 7.621 6.460 5.808 4.202 3.431 3.106 13.730 5.581 5.026 5.597 7.950 3.580 3.297 6.614 10.652 3.413 3.623 3.663 14.878 0.000 20.579 7.179 4.245 2.677 3.247 4.174 16.213 0.000 0.0 0.000 21.869 9.980 8.292 3.435 3.672 0.000 0.000 0.000 0.000 15.404 13.541 8.883 15.064 12.369 7.302 19.684 15.286 14.684 30.504 19.788 6.883 23.589 7.179 3.066 25.757 8.636 9.898 26.573 28.218 6.090 44.205 20.003 11.859 23.348 0.000 18.054 21.005 0.000 0.000 9.468 15.818 18.156 7.710 7.826 0.000 10.682 0.000 18.799 11.448 0.000 11.778 0.000 20.925 4.175 23.073 13.272 12.735 7.339 17.971 16.864 20.221 9.399 3.971 0.000 18.039 0.000 8.350 0.000 8.390 0.000 3.772 0.000 24.187 9.203 8.986 0.000 5.161 0.000 4.762 7.808 11.134 5.327 0.000 1.740 9.498 17.707 13.880 21.359 6.560 0.000 0.000 0.000 0.000 0.000 0.000 6.391 0.0 0.000 0.000 14.481 0.000 1348.991 0.000 10.312 0.000 15.887 8.462 0.000 0.000 0.000 0.000 5.547 0.0 10.946 0.000 0.000 0.000 0.000 0.000 0.000 25.084 0.000 18.232 0.000 20.694 0.000 5.296 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 0.0 0.0 9.516 5.433 15.367 6.790 0.000 12.530 0.000 0.000 0.000 0.000 11.353 1 2 3 4 5 6 7 11 8 12 9 10 14 0 15 19 18 17 16 22 34 28 21 26 24 29 32 33 31 30 20 23 27 25 2 1 3 2 1 1 2 3 3 2 1 4 5 6 4 2 1 3 5 2 1 4 3 1 2 8 3 1 4 2 7 5 6 3 4 2 5 1 2 1 3 0 1 12/31/2019 23:27:51 1/1/2020 0:21:59 3248 1 0

3165 rows × 900 columns

To examine the values of a specific column, call the column name either as an attribute of the dataframe (for example, to see people’s “feeling thermometer” ratings of Joe Biden, type anes.ftbiden) or as a string within a list (anes['ftbiden']). Then it is possible to employ methods like .describe() on this single column:

anes['ftbiden'].describe() # or anes.ftbiden.describe()
count    3165.000000
mean       56.269194
std       120.196311
min        -7.000000
25%         7.000000
50%        44.000000
75%        71.000000
max       997.000000
Name: ftbiden, dtype: float64

For categorical columns, to list of the unique categories and their frequencies, use the .value_counts() method:

anes.vote20cand.value_counts()
-1    1769
 1     419
 7     281
 6     267
 3     133
 9      71
 4      71
 5      58
 8      57
 2      38
-7       1
Name: vote20cand, dtype: int64

There’s a nicer-looking and more informative version of this frequency table available in the sidetable package, which adds the .stb.freq() method to a pandas dataframe. Pass a list with the column name to this function:

anes.stb.freq(['vote20cand'])
vote20cand Count Percent Cumulative Count Cumulative Percent
0 -1 1769 0.558926 1769 0.558926
1 1 419 0.132385 2188 0.691311
2 7 281 0.088784 2469 0.780095
3 6 267 0.084360 2736 0.864455
4 3 133 0.042022 2869 0.906477
5 9 71 0.022433 2940 0.928910
6 4 71 0.022433 3011 0.951343
7 5 58 0.018325 3069 0.969668
8 8 57 0.018009 3126 0.987678
9 2 38 0.012006 3164 0.999684
10 -7 1 0.000316 3165 1.000000

8.4. Indexing a Data Frame#

Indexing a dataframe is the act of extracting a selection of rows or columns from a dataframe based on either the numeric position of the row or column, or based on the name of the row or column. There are four ways to index a dataframe:

  • Using the .iloc attribute of the dataframe. This attribute allows us to extract certain rows and columns from a dataframe by directly entering in the row and column numbers of the selection.

  • Using the .loc attribute of the dataframe. This attribute allows us to extract rows and columns based on the row and column names.

  • Calling a specific column by name as an attribute of a dataframe.

  • Using square brackets [] after writing the dataframe’s name to extract one or more columns by referring to those columns’ names.

To extract based on numeric position, use the .iloc attribute of a dataframe as follows:

df.iloc[rownumbers, columnnumbers]

.iloc provides a version of the dataframe that can take row and column coordinates as the first and second elements within an associated list, like an array. To specify more than one row or more than one column, these elements can be lists or can use : to express a range. For example, to extract rows 1 through 4 (remembering that the first row is row 0 and tha the second number in the range is excluded) and columns 12 through 14, we can type:

anes.iloc[1:5, 12:15]
placeid1b placeidimport turnout16a
1 -1 2 1
2 -1 4 1
3 1 2 -1
4 1 2 -1

To extract rows 2, 4, 6, and 8 for columns 20, 25, and 30, we type:

anes.iloc[[2,4,6,8], [20, 25, 30]]
turnout18a1 particip_5 fttrump
2 -1 2 0
4 -1 2 94
6 -1 1 0
8 -1 1 61

The advantage of the .loc approach to extract rows and columns by name is the ability to use slicing - that is, specifying a range of columns from the leftmost to the rightmost column, and all columns in between. Writing : alone in the rows slot returns all of the rows. For example, the first of the feeling therometer features from left-to-right in the anes data is fttrump and the last column is ftpales. To extract all of these columns, we type:

anes.loc[:,'fttrump':'ftpales']
fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales
0 47 90 52 52 49 997 50 99 99 99 100 88 79 97 -1 99 82 71 86 88 90 66 89 88 81 77 98 94 89 88 99 99 92 89 86
1 41 30 41 17 31 30 29 91 96 92 93 93 25 94 -1 67 86 78 91 93 44 19 93 25 82 22 89 91 94 71 66 100 20 25 77
2 0 91 88 15 60 70 68 48 49 49 49 50 39 69 -1 63 66 51 40 2 2 2 1 3 59 1 50 1 1 1 51 87 50 1 3
3 100 50 0 0 0 0 0 0 0 0 0 0 0 -1 100 25 75 75 75 100 25 50 15 50 50 15 85 10 85 50 75 50 75 25 0
4 94 18 25 1 10 16 7 93 94 94 94 50 9 -1 92 20 68 16 94 84 23 29 50 51 49 5 73 44 72 97 58 96 60 45 45
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3160 81 20 7 4 6 1 2 94 94 94 95 21 31 -1 85 11 30 16 95 91 26 10 22 20 30 4 70 19 90 60 61 60 10 25 10
3161 35 41 25 61 92 3 1 45 56 53 69 11 3 -1 50 52 40 55 50 7 20 6 26 1 55 2 60 60 56 50 66 80 50 31 50
3162 6 31 50 2 59 0 31 88 100 100 100 60 100 -1 100 51 3 60 94 41 100 60 100 78 40 59 100 72 99 99 99 100 51 41 87
3163 1 100 95 62 79 59 51 100 65 50 52 50 51 -1 49 91 84 72 59 0 54 0 62 0 60 0 73 55 50 1 56 89 0 0 1
3164 0 100 70 51 100 100 39 100 0 100 100 99 100 100 -1 98 100 98 2 0 99 98 98 99 96 100 100 99 100 97 99 98 98 98 99

3165 rows × 35 columns

We can return one column by calling its name just like any other attribute by typing the dataframe, a period, and a column name. This approach is appropriate when we want to extract just one column for the datadrame. To extract the ftbiden column from anes, we type:

anes.ftbiden
0       52
1       41
2       88
3        0
4       25
        ..
3160     7
3161    25
3162    50
3163    95
3164    70
Name: ftbiden, Length: 3165, dtype: int64

Equivalently, we can call this column within brackets as follows:

anes['ftbiden']
0       52
1       41
2       88
3        0
4       25
        ..
3160     7
3161    25
3162    50
3163    95
3164    70
Name: ftbiden, Length: 3165, dtype: int64

This approach allows us to extract more than one column by including a list of column names in the index:

anes[['ftbiden', 'fttrump']]
ftbiden fttrump
0 52 47
1 41 41
2 88 0
3 0 100
4 25 94
... ... ...
3160 7 81
3161 25 35
3162 50 6
3163 95 1
3164 70 0

3165 rows × 2 columns

8.5. Selecting, Renaming, and Rearranging Columns#

The anes data has 900 columns, which is too many for us to feasibly work with in this notebook. Even if the intention is to run a machine learning model that processes a large number of columns, it is probably the case that some columns should not be included in the feature space. The first task in data manipulation is to restrict the data to only those columns we actually need.

For the ANES, let’s keep the following columns:

  • caseid - the primary key that identifies individual survey respondents

  • liveurban - Do you currently live in a rural area, small town, suburb, or a city?

  • vote16 - In the 2016 presidential election, who did you vote for?

  • particip_3 - In the last 12 months, have you joined in a protest march, rally, or demonstration?

  • vote20jb - If the election is between Donald Trump and Joe Biden, who will you vote for?

  • mip - What do you think is the most important problem facing this country? (free response)

  • confecon - Overall, how worried are you about the national economy?

  • ideo5 - How would you describe your personal political ideology?

  • pid7 - Which party to you identify with?

  • guarinc - Do you favor or oppose a universal basic income?

  • famsep - Do you favor or oppose the policy of family separation at the border?

  • freecol - Do you favor or oppose a policy of free tuition at public universities?

  • loans - Do you favor or oppose a policy of student loan debt forgiveness?

  • race - Race

  • birthyr - Birth year

  • gender - Gender

  • educ - Educational attainment

  • inputstate - State of residence

  • weight - The survey probability weights that need to be applied to rows to make results more representative of the U.S. adult population

The easiest way to reduce the dataframe to include only these columns is to define a list of these column names, then pass the list to the dataframe index as follows:

mycols = ['caseid','liveurban','vote16','particip_3','vote20jb',
          'mip','confecon','ideo5','pid7','guarinc','famsep',
          'freecol','loans','race','birthyr','gender','educ','inputstate', 'weight']
anes[mycols]
caseid liveurban vote16 particip_3 vote20jb mip confecon ideo5 pid7 guarinc famsep freecol loans race birthyr gender educ inputstate weight
0 1 3 3 2 2 Health Care 2 4 2 2 5 2 3 3 1969 1 2 48 1.34719693063187
1 2 3 1 2 1 Working together 2 4 6 6 4 5 6 1 1942 1 6 1 .780822076219216
2 3 1 2 2 2 health care 5 3 1 4 5 6 7 1 1954 2 2 37 .966366930694957
3 4 4 2 2 1 The economy. 2 3 1 4 3 3 2 2 1979 1 3 34 1.10348514780374
4 5 4 1 2 1 China 1 4 5 7 3 7 7 1 1940 2 6 48 1.09069730256741
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3160 3161 2 1 2 1 The infiltration of Marxists into the institut... 2 4 5 7 2 7 7 1 1948 1 4 41
3161 3162 4 3 2 3 Lack of basic resources being provided and off... 5 6 3 1 3 3 2 1 1996 1 2 45 7.03646496881757
3162 3163 4 -1 2 4 donald trump 4 2 4 7 5 7 7 3 1980 1 4 47 .892833236147303
3163 3164 3 -1 2 2 Donald Trump 3 2 2 2 4 4 5 2 1960 1 1 6 1.58161278448241
3164 3165 2 2 2 2 trump 5 3 1 7 1 7 7 5 1960 1 2 15 .809576969671362

3165 rows × 19 columns

Note that while we displayed the reduced dataframe, we have not yet saved this reduced dataframe as a Python variable.

In addition to the features listed above, let’s also include the columns that contain the “feeling thermometers”. The respondents are asked to rate many things from 0 (strongly dislike) to 100 (strongly like) including politicians like Joe Biden and Donald Trump, countries like Turkey and Canada, groups of people like Asians, immigrants, and journalists, and organizations like NATO and the NRA. These columns all begin with “ft”: the ratings for Donald Trump and Joe Biden are contained in fttrump and ftbiden, for example. Other columns contain metadata regarding these responses: ftbiden_skp indicates whether the respondent skipped this question, ord_ftbiden reports where this question appeared in each respondent’s randomized question ordering, and ftbiden_page_timing records how long the respondent took to answer this question. For this example, we only want to keep the feeling thermometers.

In this case, we want to use code that automatically identifies all of the columns that begin with a specific string like “ft” or end with a specific string like “timing”. There are two approaches to identifying and selecting columns that start or end a certain way. First, we can use the .str.startswith(), .str.endswith(), and str.contains() methods of the .columns attribute of a dataframe, and pass the result to the .loc attribute to extract the matching columns. To extract the columns that begin “ft”, we write

anes.loc[:, anes.columns.str.startswith('ft')]
fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales ftasian_skp ftbiden_skp ftblack_skp ftbritain_skp ftbuttigieg_skp ftcanada_skp ftchina_skp ftfrance_skp ftgermany_skp ftharris_skp fthisp_skp ftice_skp ftillegal_skp ftimmig1_skp ftimmig2_skp ftiran_skp ftisrael_skp ftjapan_skp ftjournal_skp ftmexico_skp ftmuslim_skp ftnato_skp ftnkorea_skp ftnra_skp ftobama_skp ftpales_skp ftrussia_skp ftsanders_skp ftsaudi_skp fttrump_skp ftturkey_skp ftukraine_skp ftun_skp ftwarren_skp ftwhite_skp fttrump_page_timing ftobama_page_timing ftbiden_page_timing ftwarren_page_timing ftsanders_page_timing ftbuttigieg_page_timing ftharris_page_timing ftblack_page_timing ftwhite_page_timing fthisp_page_timing ftasian_page_timing ftmuslim_page_timing ftillegal_page_timing ftimmig1_page_timing ftimmig2_page_timing ftjournal_page_timing ftnato_page_timing ftun_page_timing ftice_page_timing ftnra_page_timing ftchina_page_timing ftnkorea_page_timing ftmexico_page_timing ftsaudi_page_timing ftukraine_page_timing ftiran_page_timing ftbritain_page_timing ftgermany_page_timing ftjapan_page_timing ftisrael_page_timing ftfrance_page_timing ftcanada_page_timing ftturkey_page_timing ftrussia_page_timing ftpales_page_timing
0 47 90 52 52 49 997 50 99 99 99 100 88 79 97 -1 99 82 71 86 88 90 66 89 88 81 77 98 94 89 88 99 99 92 89 86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.756 8.893 10.590 8.145 6.211 5.852 13.662 8.236 4.700 2.560 3.830 8.659 1.679 3.532 0.000 5.137 3.904 3.249 5.800 7.497 10.249 4.214 5.650 3.823 3.182 2.453 4.631 4.221 3.878 3.864 13.908 2.109 2.791 4.533 4.073
1 41 30 41 17 31 30 29 91 96 92 93 93 25 94 -1 67 86 78 91 93 44 19 93 25 82 22 89 91 94 71 66 100 20 25 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12.653 4.982 3.735 3.534 2.999 4.752 3.720 5.888 3.343 3.709 3.461 3.497 2.850 2.800 0.000 4.368 3.392 4.289 5.103 3.714 3.830 3.684 3.034 3.203 4.249 3.204 4.261 2.965 3.921 3.944 3.005 3.957 2.563 2.851 5.058
2 0 91 88 15 60 70 68 48 49 49 49 50 39 69 -1 63 66 51 40 2 2 2 1 3 59 1 50 1 1 1 51 87 50 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14.342 8.833 5.336 6.344 9.386 7.735 7.817 4.727 4.530 6.723 4.873 6.401 11.542 7.602 0.000 5.969 6.955 10.404 20.956 9.733 4.223 5.717 5.417 6.487 9.220 3.874 13.394 4.204 8.374 4.453 5.695 4.635 4.992 6.135 5.758
3 100 50 0 0 0 0 0 0 0 0 0 0 0 -1 100 25 75 75 75 100 25 50 15 50 50 15 85 10 85 50 75 50 75 25 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.123 4.024 7.260 4.035 8.174 4.913 2.623 2.955 5.917 3.436 5.724 5.769 7.385 0.000 8.174 17.756 3.771 0.898 15.432 4.706 8.266 5.902 0.105 8.623 0.298 0.344 8.744 8.606 0.306 0.233 0.118 3.571 0.185 0.139 0.137
4 94 18 25 1 10 16 7 93 94 94 94 50 9 -1 92 20 68 16 94 84 23 29 50 51 49 5 73 44 72 97 58 96 60 45 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23.543 16.482 12.024 7.980 13.030 15.878 5.829 8.313 27.213 9.984 7.684 20.659 10.477 0.000 7.723 6.285 11.818 7.484 9.420 13.706 8.573 9.659 6.841 9.907 8.938 7.456 6.822 9.949 10.211 7.729 11.479 16.550 25.597 10.016 8.424
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3160 81 20 7 4 6 1 2 94 94 94 95 21 31 -1 85 11 30 16 95 91 26 10 22 20 30 4 70 19 90 60 61 60 10 25 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14.782 7.416 11.474 4.640 4.339 5.535 7.655 6.589 4.458 5.938 7.065 6.149 7.974 0.000 6.836 5.705 4.740 5.174 7.268 5.181 4.495 8.080 4.128 4.693 4.255 3.599 3.672 8.122 4.087 4.636 4.553 4.947 4.711 4.298 7.147
3161 35 41 25 61 92 3 1 45 56 53 69 11 3 -1 50 52 40 55 50 7 20 6 26 1 55 2 60 60 56 50 66 80 50 31 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 18.700 5.598 14.185 8.829 15.345 4.423 4.170 10.773 9.436 8.375 8.106 4.082 9.835 0.000 4.260 3.779 5.621 7.558 4.840 3.928 5.125 7.228 5.117 7.930 3.783 4.570 4.545 7.165 8.701 5.656 5.030 6.814 3.597 4.896 5.006
3162 6 31 50 2 59 0 31 88 100 100 100 60 100 -1 100 51 3 60 94 41 100 60 100 78 40 59 100 72 99 99 99 100 51 41 87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13.230 7.743 6.538 5.253 6.740 7.512 3.692 7.074 8.041 6.904 8.615 7.851 5.253 0.000 4.181 3.884 4.136 4.484 6.832 5.209 3.727 9.289 5.675 4.046 4.884 5.471 4.010 6.924 4.154 4.677 4.877 4.444 5.091 3.690 4.879
3163 1 100 95 62 79 59 51 100 65 50 52 50 51 -1 49 91 84 72 59 0 54 0 62 0 60 0 73 55 50 1 56 89 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 13.859 10.821 4.535 7.973 4.811 7.034 4.996 4.527 3.683 4.917 9.405 5.766 6.478 0.000 8.614 5.032 5.439 4.327 8.170 4.455 3.603 5.639 3.643 10.550 4.175 8.272 5.764 3.426 4.688 4.580 5.099 4.287 4.478 4.883 4.066
3164 0 100 70 51 100 100 39 100 0 100 100 99 100 100 -1 98 100 98 2 0 99 98 98 99 96 100 100 99 100 97 99 98 98 98 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12.883 12.828 7.378 12.400 7.377 5.027 6.363 4.359 12.839 8.849 6.745 6.412 3.484 6.198 0.000 6.742 6.963 8.125 7.621 6.460 5.808 4.202 3.431 3.106 13.730 5.581 5.026 5.597 7.950 3.580 3.297 6.614 10.652 3.413 3.623

3165 rows × 105 columns

The issue here is that this call included the page timing columns, which we did not want, because these columns also begin with “ft”. In addition, this approach does not enable us to include the features listed above.

A second approach to selecting columns is technically more complicated, but offers a great deal more control over which columns are included in the edited data and which columns are not. This approach involves using a comprehension loop on the .columns attribute to extract the elements of this list that match given patterns. The individual elements of .columns are strings on which .startswith(), .endswith(), and .contains() apply. The comprehension loop allows us to use these methods in logical statements that determine whether each element is included or excluded in the new list.

For example,

[x for x in anes.colummns]

generates a list of all 900 column names in the anes dataframe. But we can use if to place conditions on which names are included in the list. If we type

[x for x in anes.colummns if x.startswith("ft")]

then names in anes.columns are included only if it is true that they start with “ft”. However, that condition also captures the metadata columns we don’t want that begin with “ft” and end with “timing” or “skp”. We can exclude these columns by using not clauses in the logical condition as follows:

ftcols = [x for x in anes.columns if x.startswith("ft") and not x.endswith("timing") and not x.endswith("skp")]
ftcols
['fttrump',
 'ftobama',
 'ftbiden',
 'ftwarren',
 'ftsanders',
 'ftbuttigieg',
 'ftharris',
 'ftblack',
 'ftwhite',
 'fthisp',
 'ftasian',
 'ftmuslim',
 'ftillegal',
 'ftimmig1',
 'ftimmig2',
 'ftjournal',
 'ftnato',
 'ftun',
 'ftice',
 'ftnra',
 'ftchina',
 'ftnkorea',
 'ftmexico',
 'ftsaudi',
 'ftukraine',
 'ftiran',
 'ftbritain',
 'ftgermany',
 'ftjapan',
 'ftisrael',
 'ftfrance',
 'ftcanada',
 'ftturkey',
 'ftrussia',
 'ftpales']

To append two lists together, we simply add them together. Here we can append the mycols list defined above to the ftcols list to create a comprehensive list of all the columns we want to extract from anes, and we can create a new variable named anes_clean that contains only these columns:

anes_clean = anes[mycols + ftcols]
anes_clean
caseid liveurban vote16 particip_3 vote20jb mip confecon ideo5 pid7 guarinc famsep freecol loans race birthyr gender educ inputstate weight fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales
0 1 3 3 2 2 Health Care 2 4 2 2 5 2 3 3 1969 1 2 48 1.34719693063187 47 90 52 52 49 997 50 99 99 99 100 88 79 97 -1 99 82 71 86 88 90 66 89 88 81 77 98 94 89 88 99 99 92 89 86
1 2 3 1 2 1 Working together 2 4 6 6 4 5 6 1 1942 1 6 1 .780822076219216 41 30 41 17 31 30 29 91 96 92 93 93 25 94 -1 67 86 78 91 93 44 19 93 25 82 22 89 91 94 71 66 100 20 25 77
2 3 1 2 2 2 health care 5 3 1 4 5 6 7 1 1954 2 2 37 .966366930694957 0 91 88 15 60 70 68 48 49 49 49 50 39 69 -1 63 66 51 40 2 2 2 1 3 59 1 50 1 1 1 51 87 50 1 3
3 4 4 2 2 1 The economy. 2 3 1 4 3 3 2 2 1979 1 3 34 1.10348514780374 100 50 0 0 0 0 0 0 0 0 0 0 0 -1 100 25 75 75 75 100 25 50 15 50 50 15 85 10 85 50 75 50 75 25 0
4 5 4 1 2 1 China 1 4 5 7 3 7 7 1 1940 2 6 48 1.09069730256741 94 18 25 1 10 16 7 93 94 94 94 50 9 -1 92 20 68 16 94 84 23 29 50 51 49 5 73 44 72 97 58 96 60 45 45
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3160 3161 2 1 2 1 The infiltration of Marxists into the institut... 2 4 5 7 2 7 7 1 1948 1 4 41 81 20 7 4 6 1 2 94 94 94 95 21 31 -1 85 11 30 16 95 91 26 10 22 20 30 4 70 19 90 60 61 60 10 25 10
3161 3162 4 3 2 3 Lack of basic resources being provided and off... 5 6 3 1 3 3 2 1 1996 1 2 45 7.03646496881757 35 41 25 61 92 3 1 45 56 53 69 11 3 -1 50 52 40 55 50 7 20 6 26 1 55 2 60 60 56 50 66 80 50 31 50
3162 3163 4 -1 2 4 donald trump 4 2 4 7 5 7 7 3 1980 1 4 47 .892833236147303 6 31 50 2 59 0 31 88 100 100 100 60 100 -1 100 51 3 60 94 41 100 60 100 78 40 59 100 72 99 99 99 100 51 41 87
3163 3164 3 -1 2 2 Donald Trump 3 2 2 2 4 4 5 2 1960 1 1 6 1.58161278448241 1 100 95 62 79 59 51 100 65 50 52 50 51 -1 49 91 84 72 59 0 54 0 62 0 60 0 73 55 50 1 56 89 0 0 1
3164 3165 2 2 2 2 trump 5 3 1 7 1 7 7 5 1960 1 2 15 .809576969671362 0 100 70 51 100 100 39 100 0 100 100 99 100 100 -1 98 100 98 2 0 99 98 98 99 96 100 100 99 100 97 99 98 98 98 99

3165 rows × 54 columns

A related method is choosing which columns in a dataframe to drop, instead of which columns to keep. This technique is useful when we want to keep most of the columns, and it is easier to specify the few columns we want to drop. The method to drop columns is .drop(), applied to a dataframe. There are two ways to use this method. First,

df = df.drop(colstodrop, axis=1)

where colstodrop is a vector of column names for the columns we want to drop. Alternatively, we can write

df.drop(colstodrop, axis=1, inplace=True)

These two versions of the command have the same effect of dropping the columns defined in colstodrop and overwriting the Python variable for the dataframe with the new version. axis=1 specifies that the names refer to columns to be dropped, in contrast to axis=0 which would refer to rows. inplace=True provides an equivalent to df = . Either approach is fine, although I tend to avoid using inplace=True so that the code is more consistent. To delete the inputstate column from anes_clean, we type

anes_clean = anes_clean.drop('inputstate', axis=1)

If we wanted to drop multiple columns, we would write a list of the column names we want to drop in the first argument.

There are many ways to rename the columns in a dataframe, including assigning a list of new column names to the .columns attribute of a dataframe. I do not recommend that approach, however, because it requires an entry for every column and it requires these names to be written in exactly the same order as the existing columns, or else the data will be corrupted. Instead, use the .rename() method. This method does not require us to think about the left-to-right order of the columns, and it allows us to rename only a few columns without worrying about the ones we do not want to rename. To use this method, specify two parameters: first a dictionary that contains elements in the form of 'oldname':'newname', and second axis='columns' or axis=1 to work with columns.

To rename some of the columns in anes_clean, I use the following code:

anes_clean = anes_clean.rename({'particip_3':'protest',
                                'vote20jb':'vote',
                                'mip':'most_important_issue',
                                'ideo5':'ideology',
                                'pid7':'partyID',
                                'guarinc':'universal_income',
                                'famsep':'family_separation',
                                'freecol':'free_college',
                                'loans':'forgive_loans',
                                'gender':'sex',
                                'educ':'education'}, axis=1)
anes_clean
caseid liveurban vote16 protest vote most_important_issue confecon ideology partyID universal_income family_separation free_college forgive_loans race birthyr sex education weight fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales
0 1 3 3 2 2 Health Care 2 4 2 2 5 2 3 3 1969 1 2 1.34719693063187 47 90 52 52 49 997 50 99 99 99 100 88 79 97 -1 99 82 71 86 88 90 66 89 88 81 77 98 94 89 88 99 99 92 89 86
1 2 3 1 2 1 Working together 2 4 6 6 4 5 6 1 1942 1 6 .780822076219216 41 30 41 17 31 30 29 91 96 92 93 93 25 94 -1 67 86 78 91 93 44 19 93 25 82 22 89 91 94 71 66 100 20 25 77
2 3 1 2 2 2 health care 5 3 1 4 5 6 7 1 1954 2 2 .966366930694957 0 91 88 15 60 70 68 48 49 49 49 50 39 69 -1 63 66 51 40 2 2 2 1 3 59 1 50 1 1 1 51 87 50 1 3
3 4 4 2 2 1 The economy. 2 3 1 4 3 3 2 2 1979 1 3 1.10348514780374 100 50 0 0 0 0 0 0 0 0 0 0 0 -1 100 25 75 75 75 100 25 50 15 50 50 15 85 10 85 50 75 50 75 25 0
4 5 4 1 2 1 China 1 4 5 7 3 7 7 1 1940 2 6 1.09069730256741 94 18 25 1 10 16 7 93 94 94 94 50 9 -1 92 20 68 16 94 84 23 29 50 51 49 5 73 44 72 97 58 96 60 45 45
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3160 3161 2 1 2 1 The infiltration of Marxists into the institut... 2 4 5 7 2 7 7 1 1948 1 4 81 20 7 4 6 1 2 94 94 94 95 21 31 -1 85 11 30 16 95 91 26 10 22 20 30 4 70 19 90 60 61 60 10 25 10
3161 3162 4 3 2 3 Lack of basic resources being provided and off... 5 6 3 1 3 3 2 1 1996 1 2 7.03646496881757 35 41 25 61 92 3 1 45 56 53 69 11 3 -1 50 52 40 55 50 7 20 6 26 1 55 2 60 60 56 50 66 80 50 31 50
3162 3163 4 -1 2 4 donald trump 4 2 4 7 5 7 7 3 1980 1 4 .892833236147303 6 31 50 2 59 0 31 88 100 100 100 60 100 -1 100 51 3 60 94 41 100 60 100 78 40 59 100 72 99 99 99 100 51 41 87
3163 3164 3 -1 2 2 Donald Trump 3 2 2 2 4 4 5 2 1960 1 1 1.58161278448241 1 100 95 62 79 59 51 100 65 50 52 50 51 -1 49 91 84 72 59 0 54 0 62 0 60 0 73 55 50 1 56 89 0 0 1
3164 3165 2 2 2 2 trump 5 3 1 7 1 7 7 5 1960 1 2 .809576969671362 0 100 70 51 100 100 39 100 0 100 100 99 100 100 -1 98 100 98 2 0 99 98 98 99 96 100 100 99 100 97 99 98 98 98 99

3165 rows × 53 columns

8.6. Working with Categorical Features#

8.6.1. Recoding a Single Categorical Column#

The ANES uses numeric codes to represent both ordinal and nominal (unordered) categorical features. That cuts down on the memory size of the data file (storing 2 is smaller than storing Trump), but it also makes it so we can’t really understand what the individual datapoints represent. For example, here’s a frequency table of the values of vote:

anes_clean.vote.value_counts()
2    1288
1    1273
3     321
4     283
Name: vote, dtype: int64

According to the codebook, these values mean

  • 1 - Donald Trump

  • 2 - Joe Biden

  • 3 - Someone else

  • 4 - Probably will not vote

It would be much better to replace the numeric datapoints with these labels so that we can better understand the data we see. Carefully replacing the numbers with text will keep us from potentially confusing which number stands for which category. Also, if we want to construct any tables or graphs, it’s much better to display the text labels than the numeric codes. Replacing the numeric codes with text for the categorical labels is a two step process:

  1. Create a dictionary in which the keys are existing values we want to recode, and the values are the new labels we want to replace these categories with.

  2. Use the .map() method on the column of interest to apply the mapping defined by the dictionary to the data.

An alternative method is .replace() as applied to the entire dataframe, but .map() tends to be much faster than .replace(). For example, to put the text labels onto the vote column, we can first define the following dictionary, then we can apply it to the data:

replace_map = {1:'Donald Trump', 
               2:'Joe Biden', 
               3:'Someone else', 
               4:'Probably will not vote'}
anes_clean.vote = anes_clean.vote.map(replace_map)
anes_clean.vote
0                    Joe Biden
1                 Donald Trump
2                    Joe Biden
3                 Donald Trump
4                 Donald Trump
                 ...          
3160              Donald Trump
3161              Someone else
3162    Probably will not vote
3163                 Joe Biden
3164                 Joe Biden
Name: vote, Length: 3165, dtype: object

One drawback of .map() compared to .replace() is that all of the categories must be replaced. If only some categories need to be recoded and a dictionary only lists the categories to replace, then .map() replaces all of the unlisted categories with missing values, while .replace() leaves these categories as they are.

This method can also be used to collapse categories into a smaller number of categories and can be used to replace numeric codes that represent missing values with codes recognized as missing by Python. To combine categories, we set existing values to the same label. To turn some categories to missing values, we set those categories equal to np.nan.

Take ideology, for example. According to the codebook, the values of this feature mean

  • -7 - No answer

  • 1 - Very liberal

  • 2 - Liberal

  • 3 - Moderate

  • 4 - Conservative

  • 5 - Very conservative

  • 6 - Not sure Suppose that we want to label these categories in a way that combines categories 1 and 2 to be “Liberal”, sets category 3 as “Moderate”, combines categories 4 and 5 to be “Conservative”, and replaces categories -7 and 6 with missing values. We can do so with the following dictionary:

replace_map = {-7:np.nan, 1:'Liberal', 2:'Liberal', 3:'Moderate', 
               4:'Conservative', 5:'Conservative', 6:np.nan}
anes_clean.ideology = anes_clean.ideology.map(replace_map)
anes_clean.ideology
0       Conservative
1       Conservative
2           Moderate
3           Moderate
4       Conservative
            ...     
3160    Conservative
3161             NaN
3162         Liberal
3163         Liberal
3164        Moderate
Name: ideology, Length: 3165, dtype: object

8.6.2. Recoding Many Categorical Columns At Once#

To label the categories of many features, the simplest code defines a dictionary in which each feature to be recoded is a key and the mapping dictionary for that feature is the value. Then we can pass this entire dictionary to the whole dataframe with .replace(). This approach might take longer than defining a loop that uses .map() on each of these columns (.map() is only defined for series and not for dataframes), but using .replace() here is more intuitive and elegant.

We can recode all the remaining categorical features in the ANES data as follows:

replace_map = {'liveurban':{1:'Rural', 2:'Town', 3:'Suburb', 4:'City'},
              'vote16':{-1:'Did not vote', 1:'Donald Trump', 2:'Hillary Clinton', 3:'Someone else'},
              'protest':{1:True, 2:False},
              'confecon':{1:'Not at all worried', 2:'A little worried', 3:'Moderately worried', 4:'Very worried', 5:'Extremely worried'},
              'partyID':{-7:np.nan, 8: np.nan, 1:'Democrat', 2:'Democrat', 3:'Democrat', 4:'Independent', 5:'Republican', 
                         6:'Republican', 7:'Republican'},
              'universal_income':{1:'Favor a great deal', 2:'Favor a moderate amount', 3:'Favor a little', 4:'Neither favor nor oppose', 
                                  5:'Oppose a little', 6:'Oppose a moderate amount', 7:'Oppose a great deal'},
              'family_separation':{-7:np.nan, 1:'Favor strongly', 2:'Favor somewhat', 3:'Neither favor nor disagree',
                                   4:'Oppose somewhat', 5:'Oppose strongly'},
               'free_college':{-7:np.nan, 1:'Favor a great deal', 2:'Favor a moderate amount', 3:'Favor a little', 
                               4:'Neither favor nor oppose', 5:'Oppose a little', 6:'Oppose a moderate amount', 7:'Oppose a great deal'},
               'forgive_loans':{-7:np.nan, 1:'Favor a great deal', 2:'Favor a moderate amount', 3:'Favor a little', 
                               4:'Neither favor nor oppose', 5:'Oppose a little', 6:'Oppose a moderate amount', 7:'Oppose a great deal'},
               'race':{1:'White', 2:'Black', 3:'Hispanic', 4:'Other', 5:'Other', 6:'Other', 7:'Other', 8:'Other'},
               'sex':{1:'Male',2:'Female'},
               'education':{1:'No HS diploma', 2:'High school graduate', 3:'Some college', 4:'2-year degree', 
                            5:'4-year degree', 6:'Post-graduate'}}
anes_clean = anes_clean.replace(replace_map)

To apply the same recoding dictionary to many columns in the dataframe, first generate a list of the column names that share the dictionary. Then pass that list to the dataframe index to select those columns. Finally, apply the .replace() to this dataframe, inputting the dictionary for the shared recoding instructions. For example, for all of the feeling thermometer features in the data, various types of non-response are coded as -1, -7, and 997. I want to apply the dictionary

{-1:np.nan, -7:np.nan, 997:np.nan}

to every feeling thermometer feature in the data. If all of the values are to be recoded to the same single (missing) value, a shortcut is to pass to .replace() a list of the values to be recoded and np.nan. So we can equivalently write

.replace([-1, -7, 997], np.nan)

First we can generate a list of these columns, then we pass it to the dataframe. Then we apply .replace() to this selection:

ftcols = [x for x in anes_clean.columns if x.startswith("ft")]
anes_clean[ftcols] = anes_clean[ftcols].replace([-1, -7, 997], np.nan)

All of the features in the data have now been recoded:

anes_clean
caseid liveurban vote16 protest vote most_important_issue confecon ideology partyID universal_income family_separation free_college forgive_loans race birthyr sex education weight fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftimmig1 ftimmig2 ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales
0 1 Suburb Someone else False Joe Biden Health Care A little worried Conservative Democrat Favor a moderate amount Oppose strongly Favor a moderate amount Favor a little Hispanic 1969 Male High school graduate 1.34719693063187 47.0 90.0 52.0 52.0 49.0 NaN 50.0 99.0 99.0 99.0 100.0 88.0 79.0 97.0 NaN 99 82.0 71.0 86.0 88.0 90 66.0 89.0 88.0 81.0 77.0 98 94 89 88.0 99.0 99 92.0 89.0 86.0
1 2 Suburb Donald Trump False Donald Trump Working together A little worried Conservative Republican Oppose a moderate amount Oppose somewhat Oppose a little Oppose a moderate amount White 1942 Male Post-graduate .780822076219216 41.0 30.0 41.0 17.0 31.0 30.0 29.0 91.0 96.0 92.0 93.0 93.0 25.0 94.0 NaN 67 86.0 78.0 91.0 93.0 44 19.0 93.0 25.0 82.0 22.0 89 91 94 71.0 66.0 100 20.0 25.0 77.0
2 3 Rural Hillary Clinton False Joe Biden health care Extremely worried Moderate Democrat Neither favor nor oppose Oppose strongly Oppose a moderate amount Oppose a great deal White 1954 Female High school graduate .966366930694957 0.0 91.0 88.0 15.0 60.0 70.0 68.0 48.0 49.0 49.0 49.0 50.0 39.0 69.0 NaN 63 66.0 51.0 40.0 2.0 2 2.0 1.0 3.0 59.0 1.0 50 1 1 1.0 51.0 87 50.0 1.0 3.0
3 4 City Hillary Clinton False Donald Trump The economy. A little worried Moderate Democrat Neither favor nor oppose Neither favor nor disagree Favor a little Favor a moderate amount Black 1979 Male Some college 1.10348514780374 100.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NaN 100.0 25 75.0 75.0 75.0 100.0 25 50.0 15.0 50.0 50.0 15.0 85 10 85 50.0 75.0 50 75.0 25.0 0.0
4 5 City Donald Trump False Donald Trump China Not at all worried Conservative Republican Oppose a great deal Neither favor nor disagree Oppose a great deal Oppose a great deal White 1940 Female Post-graduate 1.09069730256741 94.0 18.0 25.0 1.0 10.0 16.0 7.0 93.0 94.0 94.0 94.0 50.0 9.0 NaN 92.0 20 68.0 16.0 94.0 84.0 23 29.0 50.0 51.0 49.0 5.0 73 44 72 97.0 58.0 96 60.0 45.0 45.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3160 3161 Town Donald Trump False Donald Trump The infiltration of Marxists into the institut... A little worried Conservative Republican Oppose a great deal Favor somewhat Oppose a great deal Oppose a great deal White 1948 Male 2-year degree 81.0 20.0 7.0 4.0 6.0 1.0 2.0 94.0 94.0 94.0 95.0 21.0 31.0 NaN 85.0 11 30.0 16.0 95.0 91.0 26 10.0 22.0 20.0 30.0 4.0 70 19 90 60.0 61.0 60 10.0 25.0 10.0
3161 3162 City Someone else False Someone else Lack of basic resources being provided and off... Extremely worried NaN Democrat Favor a great deal Neither favor nor disagree Favor a little Favor a moderate amount White 1996 Male High school graduate 7.03646496881757 35.0 41.0 25.0 61.0 92.0 3.0 1.0 45.0 56.0 53.0 69.0 11.0 3.0 NaN 50.0 52 40.0 55.0 50.0 7.0 20 6.0 26.0 1.0 55.0 2.0 60 60 56 50.0 66.0 80 50.0 31.0 50.0
3162 3163 City Did not vote False Probably will not vote donald trump Very worried Liberal Independent Oppose a great deal Oppose strongly Oppose a great deal Oppose a great deal Hispanic 1980 Male 2-year degree .892833236147303 6.0 31.0 50.0 2.0 59.0 0.0 31.0 88.0 100.0 100.0 100.0 60.0 100.0 NaN 100.0 51 3.0 60.0 94.0 41.0 100 60.0 100.0 78.0 40.0 59.0 100 72 99 99.0 99.0 100 51.0 41.0 87.0
3163 3164 Suburb Did not vote False Joe Biden Donald Trump Moderately worried Liberal Democrat Favor a moderate amount Oppose somewhat Neither favor nor oppose Oppose a little Black 1960 Male No HS diploma 1.58161278448241 1.0 100.0 95.0 62.0 79.0 59.0 51.0 100.0 65.0 50.0 52.0 50.0 51.0 NaN 49.0 91 84.0 72.0 59.0 0.0 54 0.0 62.0 0.0 60.0 0.0 73 55 50 1.0 56.0 89 0.0 0.0 1.0
3164 3165 Town Hillary Clinton False Joe Biden trump Extremely worried Moderate Democrat Oppose a great deal Favor strongly Oppose a great deal Oppose a great deal Other 1960 Male High school graduate .809576969671362 0.0 100.0 70.0 51.0 100.0 100.0 39.0 100.0 0.0 100.0 100.0 99.0 100.0 100.0 NaN 98 100.0 98.0 2.0 0.0 99 98.0 98.0 99.0 96.0 100.0 100 99 100 97.0 99.0 98 98.0 98.0 99.0

3165 rows × 53 columns

8.6.3. Dealing With Missing Data#

After recoding, we are left with quite a few missing values in the data. To generate a logical matrix that indicates for every cell whether the datapoint is missing or not, we can use anes_clean.isnull(). To delete every row that has even one missing value, we can use anes_clean.dropna(). That’s a heavy-handed treatment of missing data, however, that can severely reduce sample size and can lead to biases in analytical results of datapoints are missing not at random. There are much better treatments for missing data, called imputation methods. Many methods for missing data imputation are implemented in the scikit-learn package.

One application of the isnull() method is to replace missing values with known values if those values are available elsewhere. For example, the ANES asked two versions of the feeling thermometer for immigrants. A respondent is only asked one of the two questions, so one of ftimmig1 and ftimmig2 is missing:

anes_clean[['ftimmig1','ftimmig2']]
ftimmig1 ftimmig2
0 97.0 NaN
1 94.0 NaN
2 69.0 NaN
3 NaN 100.0
4 NaN 92.0
... ... ...
3160 NaN 85.0
3161 NaN 50.0
3162 NaN 100.0
3163 NaN 49.0
3164 100.0 NaN

3165 rows × 2 columns

We can create a new column called ftimmig and set it equal to ftimmig1. Then we can subset this column to just the rows for which ftimmig1 is missing by typing

anes_clean.ftimmig[anes_clean.ftimmig1.isnull()]

We can then set these values equal to ftimmig2 for the same subset where ftimmig1 is missing:

anes_clean['ftimmig'] = anes_clean.ftimmig1
anes_clean.ftimmig[anes_clean.ftimmig1.isnull()] = anes_clean.ftimmig2[anes_clean.ftimmig1.isnull()]
anes_clean[['ftimmig','ftimmig1','ftimmig2']]
ftimmig ftimmig1 ftimmig2
0 97.0 97.0 NaN
1 94.0 94.0 NaN
2 69.0 69.0 NaN
3 100.0 NaN 100.0
4 92.0 NaN 92.0
... ... ... ...
3160 85.0 NaN 85.0
3161 50.0 NaN 50.0
3162 100.0 NaN 100.0
3163 49.0 NaN 49.0
3164 100.0 100.0 NaN

3165 rows × 3 columns

Now that we have created ftimmig, we can drop ftimmig1 and ftimmig2:

anes_clean = anes_clean.drop(['ftimmig1','ftimmig2'], axis=1)

8.6.4. Why Recoding Categorical Data is Dangerous#

Before we move on to another topic, there are three reasons why recoding categorical data is one of the most dangerous tasks in data manipulation.

First, it is very easy here to mistakenly place the wrong labels on categories. If we make an error here, Python will not inform us of the error. It is important to read the codebook carefully and make certain that the categories are labeled correctly. For example, suppose I want to study the effect of attending a political protest on voters’ preferences and beliefs. The ANES data contains a feature that reports whether or not each individual has attended a political protest in the last year. The value 1 means that the person attended a protest, and the value 2 means that the person did not attend a protest. If we mix up these labels, then any analysis that uses the protest feature will not only be wrong - it will generate results that are exactly the opposite of the truth. Suppose that people who attend a protest are 20% more likely to vote in the upcoming election than people who have not attended a protest. If we mislabel the protest categories, the result would suggest that people who attend a protest are 20% less likely to vote, and this result will have the same level of uncertainty as the truth. Imagine if these data came from a drug trial: if we mislabel the treatment and control groups, we would conclude that a drug that benefits patients harms those patients, or vice versa.

Second, we have an opportunity to change the data in significant ways while recoding categories. These changes might be the correct ones to make, but it is important to be extremely transparent with all of the changes as they can impact the results of any subsequent analysis. For example, the party identification feature in the ANES data is coded as

  • 1 - Strong Democrat

  • 2 - Not very strong Democrat

  • 3 - Independent, closer to Democrats

  • 4 - Independent

  • 5 - Independent, closer to Republicans

  • 6 - Not very strong Republican

  • 7 - Strong Republican

For my purposes I choose to recode this feature as having three categories, Democrat, Republican, and independent. But to do so, I have to choose how exactly to collapse categories. I choose to combine “Strong Democrat”, “Not very strong Democrat”, and “Independent, closer to Democrats” into a category named “Democrat”, and “Strong Republican”, “Not very strong Republican”, and “Independent, closer to Republicans” into a category named “Republican”. I leave “Independent” as it is. There is not an unambiguously correct way to perform this recoding: maybe the two leaning-independent categories should be grouped within “Independent” instead. I recode the feature in this way because I theorize that many people in the survey will declare themselves to be independent, but really behave more like Democrats or Republicans. Even though I have a reason for choosing my coding scheme, it is a decision that can change any analysis that uses party identification. Maybe the results would be very different if we expanded the independent category.

Third, if the categories for a feature can be aligned in a meaningful order, we have a choice about whether to treat this feature as categorical or as numeric. If we treat the feature as categorical, then we label each number. That’s useful especially for generating visualizations in which this feature comprises an axis. If we treat the feature as numeric, we leave the numbers as they are (while ensuring that the categories are in the right order). That’s useful if we want to report statistics like the mean and variance, and we believe that these statistics have meaning for the ordered scale. For features like universal_income in the ANES data, the categories represent degrees of support for a policy. If we label the categories, we see clearly how many people adopt each nuanced position on the spectrum between support and non-support. If we leave the categories as numbers, we can report the average level of support on the 7-point scale. Whether to label the categories of an ordered categorical feature or leave them as numeric should therefore depend on the problems the feature will be applied to.

8.7. Sorting Rows#

Sorting is a largely cosmetic thing to do because most analyses don’t use the ordering of the rows to generate results. That said, especially in the early data cleaning stages of an analysis, it can be very useful to sort the rows of a dataframe according to the values in one or more columns, especially if the data contain an ID with a clear alphabetic or numeric order, like country names or time.

To sort, use the .sort_values() method. Within the method, use the by argument to specify the column you want to sort by. By default, sorting is done in ascending order for numeric features and in alphabetical order for string features, To save the sorting, either write inplace=True or re-assign the sorted dataframe to the same variable. .sort_values() will always put rows that have missing values for the sorting column at the bottom of the dataframe.

For example, to sort by lowest to highest ratings of Donald Trump, we can type:

anes_clean.sort_values(by = 'fttrump')
caseid liveurban vote16 protest vote most_important_issue confecon ideology partyID universal_income family_separation free_college forgive_loans race birthyr sex education weight fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales ftimmig
3164 3165 Town Hillary Clinton False Joe Biden trump Extremely worried Moderate Democrat Oppose a great deal Favor strongly Oppose a great deal Oppose a great deal Other 1960 Male High school graduate .809576969671362 0.0 100.0 70.0 51.0 100.0 100.0 39.0 100.0 0.0 100.0 100.0 99.0 100.0 98 100.0 98.0 2.0 0.0 99 98.0 98.0 99.0 96.0 100.0 100 99 100 97.0 99.0 98 98.0 98.0 99.0 100.0
1761 1762 City Hillary Clinton False Joe Biden The current incumbent in the White House. He h... Moderately worried Liberal Democrat Neither favor nor oppose Oppose strongly Neither favor nor oppose Oppose a little White 1974 Male 4-year degree 1.03413132599488 0.0 74.0 67.0 63.0 80.0 41.0 52.0 90.0 90.0 90.0 90.0 90.0 80.0 55 60.0 50.0 1.0 0.0 5 0.0 84.0 0.0 62.0 22.0 70 70 65 30.0 58.0 99 38.0 6.0 56.0 89.0
419 420 City Hillary Clinton False Joe Biden Climate Moderately worried Moderate Democrat Favor a little Oppose strongly Favor a moderate amount Favor a little White 1960 Female 4-year degree 1.0029772835284 0.0 75.0 59.0 65.0 60.0 74.0 66.0 75.0 51.0 64.0 73.0 51.0 48.0 65 75.0 75.0 39.0 37.0 50 44.0 69.0 50.0 69.0 50.0 84 91 79 87.0 88.0 81 43.0 41.0 66.0 60.0
1763 1764 Suburb Hillary Clinton False Joe Biden Environment Extremely worried Liberal Democrat Favor a moderate amount Oppose strongly Favor a great deal Favor a great deal White 1980 Female 4-year degree 1.03404200778801 0.0 95.0 77.0 81.0 78.0 74.0 91.0 95.0 72.0 93.0 89.0 92.0 91.0 100 95.0 93.0 3.0 3.0 39 10.0 81.0 33.0 82.0 59.0 81 93 87 61.0 87.0 86 56.0 6.0 62.0 91.0
1767 1768 Town Did not vote True Joe Biden Narcissism, sexism, homophobia, & global warming. Moderately worried NaN NaN Neither favor nor oppose Oppose strongly Neither favor nor oppose Neither favor nor oppose Hispanic 1991 Female 4-year degree .818480694706408 0.0 10.0 71.0 22.0 72.0 54.0 67.0 26.0 97.0 59.0 99.0 57.0 72.0 82 52.0 52.0 1.0 48.0 52 50.0 4.0 49.0 50.0 3.0 7 51 49 48.0 53.0 98 51.0 49.0 50.0 80.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2764 2765 City Did not vote False Someone else make sure poeple dont do bad things Moderately worried NaN Independent Neither favor nor oppose Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose White 1997 Female High school graduate 1.08673596743961 NaN 100.0 NaN NaN NaN NaN NaN 12.0 100.0 6.0 16.0 39.0 19.0 31 28.0 36.0 72.0 53.0 22 45.0 21.0 29.0 49.0 44.0 10 100 41 39.0 47.0 31 10.0 46.0 26.0 27.0
2823 2824 Town Did not vote False Donald Trump Poverty Very worried NaN Republican Neither favor nor oppose Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose White 1983 Female 2-year degree .772007610334614 NaN NaN NaN NaN NaN NaN NaN 3.0 9.0 6.0 7.0 4.0 6.0 6 NaN NaN NaN NaN 6 5.0 4.0 5.0 6.0 6.0 6 8 7 6.0 3.0 9 6.0 3.0 6.0 2.0
2910 2911 City Hillary Clinton True Joe Biden Very worried Conservative Democrat Favor a moderate amount Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose Black 1972 Female High school graduate .894064952261024 NaN 56.0 30.0 38.0 23.0 29.0 42.0 28.0 50.0 71.0 34.0 39.0 23.0 32 17.0 50.0 38.0 41.0 27 25.0 35.0 40.0 43.0 34.0 31 72 27 28.0 45.0 60 32.0 41.0 32.0 27.0
3019 3020 Town Did not vote False Probably will not vote Idk Extremely worried NaN NaN Neither favor nor oppose Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose Black 1994 Female 2-year degree 1.38707451644063 NaN NaN NaN NaN NaN NaN NaN 27.0 36.0 36.0 22.0 27.0 37.0 21 NaN NaN 29.0 NaN 29 38.0 29.0 19.0 28.0 18.0 20 33 40 22.0 23.0 38 31.0 41.0 40.0 28.0
3091 3092 Suburb Hillary Clinton True Someone else Donald Trump and the Rep party’s lack of moral... Extremely worried Liberal Democrat Oppose a great deal Oppose strongly Favor a great deal Favor a great deal Hispanic 1970 Male 4-year degree .556427919485323 NaN 68.0 43.0 91.0 97.0 51.0 58.0 96.0 11.0 96.0 96.0 81.0 92.0 58 92.0 93.0 0.0 4.0 16 6.0 97.0 9.0 44.0 53.0 69 82 62 57.0 76.0 100 4.0 4.0 66.0 94.0

3165 rows × 52 columns

To sort in descending order from the highest to lowest values of fttrump, we can use the ascending=False parameter:

anes_clean.sort_values(by = 'fttrump', ascending=False)
caseid liveurban vote16 protest vote most_important_issue confecon ideology partyID universal_income family_separation free_college forgive_loans race birthyr sex education weight fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales ftimmig
2452 2453 Rural Donald Trump False Donald Trump None A little worried Conservative Republican Favor a little Favor strongly Neither favor nor oppose Favor a little White 1995 Female High school graduate .753518532246602 100.0 9.0 1.0 5.0 9.0 3.0 3.0 5.0 3.0 7.0 1.0 0.0 2.0 9 16.0 7.0 4.0 2.0 8 13.0 15.0 5.0 6.0 15.0 9 18 8 9.0 9.0 0 2.0 13.0 8.0 4.0
1735 1736 Suburb Donald Trump False Donald Trump The illegal immigrant entering the country ill... A little worried Conservative Republican Oppose a great deal Favor somewhat Oppose a great deal Oppose a great deal White 1981 Female Some college .819619380522467 100.0 3.0 0.0 0.0 1.0 0.0 4.0 54.0 53.0 50.0 48.0 3.0 0.0 2 1.0 1.0 99.0 97.0 0 1.0 0.0 0.0 0.0 3.0 53 9 25 88.0 52.0 2 52.0 2.0 2.0 100.0
3076 3077 Suburb Donald Trump False Donald Trump Fake News Media A little worried Conservative Republican Oppose a great deal Neither favor nor disagree Oppose a great deal Oppose a great deal White 1966 Male Post-graduate 1.25802472009798 100.0 6.0 0.0 2.0 2.0 5.0 5.0 50.0 50.0 50.0 50.0 50.0 3.0 2 15.0 4.0 100.0 100.0 3 3.0 50.0 27.0 4.0 3.0 51 3 62 100.0 30.0 50 4.0 5.0 3.0 70.0
2174 2175 Rural Donald Trump False Donald Trump lifetime politicians Not at all worried Conservative Republican Oppose a great deal Favor somewhat Oppose a great deal Oppose a great deal White 1947 Male High school graduate 100.0 1.0 0.0 1.0 1.0 1.0 3.0 79.0 79.0 82.0 69.0 2.0 1.0 20 5.0 6.0 69.0 95.0 15 5.0 12.0 20.0 59.0 0.0 60 25 41 89.0 11.0 69 29.0 74.0 4.0 80.0
3077 3078 Suburb Donald Trump False Donald Trump Illegal immigration Not at all worried Conservative Republican Oppose a great deal Neither favor nor disagree Oppose a great deal Oppose a great deal White 1960 Male Post-graduate 1.0152659648901 100.0 31.0 13.0 33.0 15.0 16.0 25.0 93.0 88.0 94.0 87.0 72.0 40.0 8 54.0 23.0 100.0 82.0 11 3.0 72.0 47.0 39.0 4.0 88 44 96 100.0 19.0 70 23.0 42.0 12.0 90.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2764 2765 City Did not vote False Someone else make sure poeple dont do bad things Moderately worried NaN Independent Neither favor nor oppose Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose White 1997 Female High school graduate 1.08673596743961 NaN 100.0 NaN NaN NaN NaN NaN 12.0 100.0 6.0 16.0 39.0 19.0 31 28.0 36.0 72.0 53.0 22 45.0 21.0 29.0 49.0 44.0 10 100 41 39.0 47.0 31 10.0 46.0 26.0 27.0
2823 2824 Town Did not vote False Donald Trump Poverty Very worried NaN Republican Neither favor nor oppose Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose White 1983 Female 2-year degree .772007610334614 NaN NaN NaN NaN NaN NaN NaN 3.0 9.0 6.0 7.0 4.0 6.0 6 NaN NaN NaN NaN 6 5.0 4.0 5.0 6.0 6.0 6 8 7 6.0 3.0 9 6.0 3.0 6.0 2.0
2910 2911 City Hillary Clinton True Joe Biden Very worried Conservative Democrat Favor a moderate amount Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose Black 1972 Female High school graduate .894064952261024 NaN 56.0 30.0 38.0 23.0 29.0 42.0 28.0 50.0 71.0 34.0 39.0 23.0 32 17.0 50.0 38.0 41.0 27 25.0 35.0 40.0 43.0 34.0 31 72 27 28.0 45.0 60 32.0 41.0 32.0 27.0
3019 3020 Town Did not vote False Probably will not vote Idk Extremely worried NaN NaN Neither favor nor oppose Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose Black 1994 Female 2-year degree 1.38707451644063 NaN NaN NaN NaN NaN NaN NaN 27.0 36.0 36.0 22.0 27.0 37.0 21 NaN NaN 29.0 NaN 29 38.0 29.0 19.0 28.0 18.0 20 33 40 22.0 23.0 38 31.0 41.0 40.0 28.0
3091 3092 Suburb Hillary Clinton True Someone else Donald Trump and the Rep party’s lack of moral... Extremely worried Liberal Democrat Oppose a great deal Oppose strongly Favor a great deal Favor a great deal Hispanic 1970 Male 4-year degree .556427919485323 NaN 68.0 43.0 91.0 97.0 51.0 58.0 96.0 11.0 96.0 96.0 81.0 92.0 58 92.0 93.0 0.0 4.0 16 6.0 97.0 9.0 44.0 53.0 69 82 62 57.0 76.0 100 4.0 4.0 66.0 94.0

3165 rows × 52 columns

We can also sort the rows by the values of more than one column. When we do that, the second (and third, and so on) column is only used to break the ties of the first (and second, etc.) column. All we have to do is write more than one column name in a list, and pass that list to the by argument of .sort_values(). The ascending argument also takes a list of True or False values to denote whether each of the columns should be sorted in ascending or descending order. To sort the rows in ascending order by values of the Donald Trump thermometer, while breaking ties by descending order of the Joe Biden thermometer, we can type:

anes_clean.sort_values(by=['fttrump', 'ftbiden'], ascending = [True, False])
caseid liveurban vote16 protest vote most_important_issue confecon ideology partyID universal_income family_separation free_college forgive_loans race birthyr sex education weight fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales ftimmig
94 95 Suburb Hillary Clinton False Joe Biden The president. Not at all worried Liberal Democrat Neither favor nor oppose Oppose strongly Favor a moderate amount Favor a great deal White 1947 Female Some college 1.02094882538262 0.0 100.0 100.0 71.0 70.0 99.0 60.0 50.0 50.0 50.0 51.0 50.0 50.0 85 99.0 94.0 25.0 0.0 0 0.0 96.0 56.0 95.0 0.0 100 94 95 41.0 95.0 100 30.0 0.0 69.0 50.0
262 263 City Hillary Clinton False Joe Biden Trumps presidency Moderately worried Liberal Democrat Favor a little Oppose strongly Favor a moderate amount Oppose a little White 1959 Male High school graduate .878855634357939 0.0 99.0 100.0 91.0 100.0 91.0 41.0 50.0 50.0 91.0 50.0 40.0 50.0 90 99.0 87.0 2.0 1.0 4 2.0 80.0 0.0 51.0 1.0 96 91 91 40.0 99.0 99 1.0 1.0 91.0 81.0
355 356 Suburb Hillary Clinton False Joe Biden That Donald Trump is an immoral racist man who... A little worried Moderate Democrat Oppose a great deal Oppose strongly Favor a great deal Favor a great deal White 1957 Female 2-year degree 1.03170391458116 0.0 80.0 100.0 27.0 28.0 98.0 31.0 50.0 52.0 51.0 50.0 51.0 71.0 74 66.0 57.0 6.0 1.0 5 1.0 70.0 2.0 51.0 2.0 99 100 86 38.0 78.0 99 3.0 2.0 NaN 74.0
461 462 Town Hillary Clinton False Joe Biden The division made by Donald Trump as it concer... Moderately worried Liberal Democrat Oppose a moderate amount Oppose strongly Favor a little Favor a moderate amount White 1955 Female Some college 1.03170391458116 0.0 91.0 100.0 70.0 80.0 91.0 51.0 89.0 80.0 91.0 90.0 88.0 71.0 96 100.0 90.0 4.0 5.0 37 4.0 79.0 28.0 84.0 33.0 100 85 90 80.0 85.0 98 40.0 5.0 79.0 90.0
499 500 City Hillary Clinton False Joe Biden The economy Extremely worried NaN Democrat Favor a great deal Oppose strongly Favor a moderate amount Favor a great deal Hispanic 1967 Male No HS diploma 2.26361888055549 0.0 98.0 100.0 98.0 97.0 NaN NaN 66.0 99.0 100.0 100.0 97.0 99.0 68 NaN 99.0 2.0 39.0 100 2.0 55.0 16.0 99.0 3.0 99 100 58 97.0 100.0 99 63.0 13.0 99.0 92.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2499 2500 City Did not vote False Probably will not vote don’t know A little worried NaN NaN Neither favor nor oppose Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose Hispanic 1998 Female Some college .893556010098802 NaN NaN NaN NaN NaN NaN NaN 50.0 50.0 50.0 51.0 52.0 49.0 51 NaN NaN NaN NaN 50 50.0 51.0 51.0 47.0 49.0 51 48 50 50.0 50.0 50 53.0 52.0 48.0 48.0
2533 2534 Suburb Did not vote False Probably will not vote Everything A little worried NaN NaN Neither favor nor oppose Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose Black 1987 Female High school graduate .738770525410191 NaN NaN NaN NaN NaN NaN NaN 99.0 75.0 53.0 13.0 88.0 47.0 88 NaN 13.0 NaN NaN 6 7.0 4.0 2.0 11.0 6.0 7 3 4 1.0 5.0 3 9.0 6.0 6.0 48.0
2764 2765 City Did not vote False Someone else make sure poeple dont do bad things Moderately worried NaN Independent Neither favor nor oppose Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose White 1997 Female High school graduate 1.08673596743961 NaN 100.0 NaN NaN NaN NaN NaN 12.0 100.0 6.0 16.0 39.0 19.0 31 28.0 36.0 72.0 53.0 22 45.0 21.0 29.0 49.0 44.0 10 100 41 39.0 47.0 31 10.0 46.0 26.0 27.0
2823 2824 Town Did not vote False Donald Trump Poverty Very worried NaN Republican Neither favor nor oppose Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose White 1983 Female 2-year degree .772007610334614 NaN NaN NaN NaN NaN NaN NaN 3.0 9.0 6.0 7.0 4.0 6.0 6 NaN NaN NaN NaN 6 5.0 4.0 5.0 6.0 6.0 6 8 7 6.0 3.0 9 6.0 3.0 6.0 2.0
3019 3020 Town Did not vote False Probably will not vote Idk Extremely worried NaN NaN Neither favor nor oppose Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose Black 1994 Female 2-year degree 1.38707451644063 NaN NaN NaN NaN NaN NaN NaN 27.0 36.0 36.0 22.0 27.0 37.0 21 NaN NaN 29.0 NaN 29 38.0 29.0 19.0 28.0 18.0 20 33 40 22.0 23.0 38 31.0 41.0 40.0 28.0

3165 rows × 52 columns

8.8. Filtering Rows#

Filtering is the task of keeping or deleting rows based on a logical condition. Prior to discussing the code for filtering, let’s review logical operators. Every logical statement returns a value of True or False in Python, and these statements are useful for keeping rows for which a condition is True and deleting rows for which a condition is False.

Python has the following logical operators:

  • == “is equal to”

  • != “is not equal to”

  • > “is greater than”

  • >= “is greater than or equal to”

  • < “is less than”

  • <= “is less than or equal to”

  • in “is in the list”

  • not in “is not in the list”

It also has the following symbols to connect logical statements to build more complicated statements:

  • & “and” (both conditions must be true for the whole statement to be true)

  • | “or” (at least one of the conditiona must be true for the whole statement to be true)

  • not turns True results to False, and vice versa

  • ( and ) (parentheses work with logic the way they do with algebra – consider this part of the statement first)

There are many ways to filter the rows in a dataframe based on a logical condition, but the best method is .query() because of its notational ease and because it allows chaining: that is, specifying many logical conditions with repeated calls to .query(). Chaining is another way to express “and” in a combined logical statement. To use .query(), type it as a method applied to the dataframe in question, and put the logical condition in double quotes - that allows us to use single quotes within the query. For example, to see just the Joe Biden voters, type:

anes_clean.query("vote=='Joe Biden'")
caseid liveurban vote16 protest vote most_important_issue confecon ideology partyID universal_income family_separation free_college forgive_loans race birthyr sex education weight fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales ftimmig
0 1 Suburb Someone else False Joe Biden Health Care A little worried Conservative Democrat Favor a moderate amount Oppose strongly Favor a moderate amount Favor a little Hispanic 1969 Male High school graduate 1.34719693063187 47.0 90.0 52.0 52.0 49.0 NaN 50.0 99.0 99.0 99.0 100.0 88.0 79.0 99 82.0 71.0 86.0 88.0 90 66.0 89.0 88.0 81.0 77.0 98 94 89 88.0 99.0 99 92.0 89.0 86.0 97.0
2 3 Rural Hillary Clinton False Joe Biden health care Extremely worried Moderate Democrat Neither favor nor oppose Oppose strongly Oppose a moderate amount Oppose a great deal White 1954 Female High school graduate .966366930694957 0.0 91.0 88.0 15.0 60.0 70.0 68.0 48.0 49.0 49.0 49.0 50.0 39.0 63 66.0 51.0 40.0 2.0 2 2.0 1.0 3.0 59.0 1.0 50 1 1 1.0 51.0 87 50.0 1.0 3.0 69.0
5 6 Suburb Hillary Clinton False Joe Biden The influence of big money on our political sy... Not at all worried Moderate Democrat Favor a moderate amount Oppose strongly Favor a moderate amount Favor a great deal Black 1942 Male 4-year degree 1.02140871415171 46.0 83.0 80.0 69.0 80.0 59.0 64.0 87.0 69.0 80.0 61.0 70.0 63.0 56 68.0 70.0 58.0 43.0 61 47.0 76.0 51.0 81.0 49.0 81 65 74 95.0 72.0 71 51.0 44.0 81.0 81.0
6 7 City Did not vote False Joe Biden Moderately worried Liberal Democrat Neither favor nor oppose Oppose strongly Neither favor nor oppose Neither favor nor oppose White 2000 Female Some college .964514474045239 0.0 100.0 75.0 91.0 52.0 71.0 81.0 98.0 85.0 97.0 98.0 98.0 73.0 70 97.0 97.0 47.0 3.0 53 51.0 75.0 50.0 70.0 50.0 59 74 73 50.0 90.0 95 63.0 18.0 70.0 99.0
7 8 City Hillary Clinton True Joe Biden climate change Not at all worried Liberal Democrat Favor a little Oppose strongly Favor a little Oppose a moderate amount White 1994 Female Post-graduate .83469258858232 1.0 83.0 45.0 86.0 71.0 71.0 79.0 73.0 75.0 76.0 76.0 79.0 75.0 75 50.0 86.0 40.0 1.0 23 0.0 70.0 38.0 50.0 35.0 60 66 78 56.0 58.0 82 50.0 33.0 46.0 76.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3153 3154 City Donald Trump False Joe Biden The manner in which Donald Trump conducts hims... Moderately worried Moderate Democrat Favor a great deal Oppose strongly Oppose a great deal Oppose a great deal White 1939 Male Some college .83972997938151 6.0 69.0 12.0 20.0 50.0 99.0 13.0 69.0 69.0 69.0 69.0 69.0 31.0 59 51.0 51.0 79.0 1.0 15 2.0 48.0 3.0 54.0 4.0 83 72 70 50.0 75.0 84 13.0 9.0 50.0 69.0
3154 3155 Town Did not vote False Joe Biden trump Moderately worried Liberal Democrat Favor a great deal Oppose strongly Favor a great deal Favor a great deal White 1978 Male 4-year degree .919903784560563 1.0 81.0 61.0 65.0 81.0 70.0 65.0 50.0 60.0 46.0 56.0 45.0 50.0 60 70.0 60.0 30.0 6.0 35 21.0 41.0 11.0 50.0 11.0 69 45 75 46.0 56.0 85 27.0 15.0 36.0 55.0
3156 3157 Suburb Hillary Clinton False Joe Biden health care A little worried Moderate Democrat Favor a moderate amount Oppose strongly Oppose a moderate amount Oppose a great deal White 1980 Male Post-graduate .783602487218187 1.0 95.0 86.0 41.0 41.0 81.0 70.0 99.0 99.0 100.0 100.0 45.0 60.0 100 94.0 95.0 46.0 16.0 79 30.0 99.0 48.0 65.0 28.0 85 99 100 66.0 99.0 99 40.0 70.0 56.0 100.0
3163 3164 Suburb Did not vote False Joe Biden Donald Trump Moderately worried Liberal Democrat Favor a moderate amount Oppose somewhat Neither favor nor oppose Oppose a little Black 1960 Male No HS diploma 1.58161278448241 1.0 100.0 95.0 62.0 79.0 59.0 51.0 100.0 65.0 50.0 52.0 50.0 51.0 91 84.0 72.0 59.0 0.0 54 0.0 62.0 0.0 60.0 0.0 73 55 50 1.0 56.0 89 0.0 0.0 1.0 49.0
3164 3165 Town Hillary Clinton False Joe Biden trump Extremely worried Moderate Democrat Oppose a great deal Favor strongly Oppose a great deal Oppose a great deal Other 1960 Male High school graduate .809576969671362 0.0 100.0 70.0 51.0 100.0 100.0 39.0 100.0 0.0 100.0 100.0 99.0 100.0 98 100.0 98.0 2.0 0.0 99 98.0 98.0 99.0 96.0 100.0 100 99 100 97.0 99.0 98 98.0 98.0 99.0 100.0

1288 rows × 52 columns

To keep the rows for people that will vote for Joe Biden, but rate him less than 40:

anes_clean.query("vote=='Joe Biden' & ftbiden < 40")
caseid liveurban vote16 protest vote most_important_issue confecon ideology partyID universal_income family_separation free_college forgive_loans race birthyr sex education weight fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales ftimmig
12 13 City Donald Trump False Joe Biden Assumenda mollit bla Extremely worried Moderate Independent Favor a moderate amount Favor somewhat Oppose a little Neither favor nor oppose White 1994 Female 2-year degree 1.08428147456979 25.0 66.0 31.0 86.0 NaN 53.0 78.0 69.0 21.0 51.0 47.0 70.0 54.0 62 49.0 NaN NaN NaN 65 42.0 26.0 33.0 51.0 53.0 78 61 46 76.0 38.0 36 10.0 67.0 50.0 34.0
63 64 Suburb Hillary Clinton False Joe Biden Climate change and partly because we refuse to... A little worried Liberal Democrat Oppose a little Neither favor nor disagree Oppose a little Favor a little White 1930 Female Post-graduate 1.02996454702489 5.0 76.0 37.0 73.0 64.0 55.0 39.0 67.0 64.0 71.0 67.0 59.0 64.0 66 63.0 50.0 22.0 6.0 21 5.0 50.0 50.0 22.0 26.0 68 59 60 31.0 50.0 87 44.0 22.0 71.0 74.0
65 66 Rural Hillary Clinton False Joe Biden Trump Moderately worried Liberal Democrat Neither favor nor oppose Oppose strongly Oppose a little Oppose a moderate amount White 1952 Female High school graduate 1.02515128827396 0.0 100.0 33.0 34.0 96.0 96.0 42.0 90.0 49.0 21.0 50.0 50.0 0.0 71 50.0 51.0 3.0 0.0 53 0.0 22.0 0.0 61.0 1.0 80 50 30 1.0 53.0 94 12.0 0.0 10.0 76.0
105 106 Town Did not vote False Joe Biden guns Moderately worried NaN NaN Neither favor nor oppose Oppose strongly Favor a little Favor a great deal Other 1996 Female 4-year degree .77435239235677 0.0 51.0 8.0 59.0 73.0 76.0 2.0 53.0 0.0 44.0 87.0 3.0 50.0 52 8.0 33.0 5.0 0.0 4 50.0 2.0 1.0 38.0 37.0 5 51 66 1.0 6.0 30 100.0 2.0 47.0 50.0
129 130 Town Hillary Clinton False Joe Biden Lack of access to healthcare, racism, white na... Very worried Liberal Democrat Favor a great deal Oppose strongly Favor a great deal Favor a great deal White 1977 Female Post-graduate 1.15605850208199 0.0 61.0 9.0 90.0 100.0 15.0 42.0 100.0 64.0 95.0 100.0 100.0 79.0 89 71.0 90.0 0.0 0.0 59 0.0 69.0 6.0 50.0 59.0 88 100 86 27.0 100.0 91 15.0 22.0 83.0 100.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3063 3064 Rural Hillary Clinton False Joe Biden Gun violence A little worried Liberal Democrat Oppose a moderate amount Oppose strongly Favor a great deal Favor a moderate amount White 1957 Male High school graduate .897550307642941 5.0 65.0 21.0 71.0 84.0 34.0 59.0 69.0 59.0 50.0 46.0 39.0 36.0 59 50.0 50.0 50.0 5.0 53 0.0 61.0 29.0 18.0 18.0 97 69 67 59.0 52.0 89 39.0 6.0 17.0 50.0
3069 3070 Suburb Hillary Clinton False Joe Biden ECONOMY Very worried Liberal Democrat Favor a moderate amount Oppose somewhat Favor a great deal Favor a moderate amount White 1983 Male 2-year degree .938881851047225 11.0 71.0 31.0 39.0 99.0 30.0 19.0 30.0 51.0 71.0 94.0 47.0 28.0 51 50.0 51.0 59.0 49.0 61 59.0 69.0 50.0 50.0 50.0 50 69 70 50.0 59.0 60 49.0 51.0 51.0 69.0
3136 3137 Rural Hillary Clinton False Joe Biden Donald J. Trump Moderately worried Liberal Democrat Favor a little Oppose strongly Favor a little Favor a little White 1950 Male Some college .944411233915414 3.0 86.0 22.0 94.0 9.0 94.0 25.0 53.0 58.0 59.0 57.0 59.0 60.0 94 84.0 85.0 11.0 3.0 5 6.0 94.0 5.0 88.0 6.0 92 84 84 76.0 88.0 95 5.0 4.0 53.0 67.0
3146 3147 Suburb Hillary Clinton False Joe Biden The ever-growing populism from both sides of t... Extremely worried Liberal Democrat Favor a great deal Oppose strongly Favor a moderate amount Favor a great deal White 1995 Male 4-year degree 1.08737874806145 0.0 76.0 34.0 87.0 22.0 66.0 62.0 60.0 61.0 61.0 72.0 46.0 85.0 88 82.0 41.0 0.0 1.0 1 0.0 86.0 0.0 84.0 29.0 18 81 77 0.0 35.0 68 4.0 0.0 49.0 86.0
3153 3154 City Donald Trump False Joe Biden The manner in which Donald Trump conducts hims... Moderately worried Moderate Democrat Favor a great deal Oppose strongly Oppose a great deal Oppose a great deal White 1939 Male Some college .83972997938151 6.0 69.0 12.0 20.0 50.0 99.0 13.0 69.0 69.0 69.0 69.0 69.0 31.0 59 51.0 51.0 79.0 1.0 15 2.0 48.0 3.0 54.0 4.0 83 72 70 50.0 75.0 84 13.0 9.0 50.0 69.0

121 rows × 52 columns

Or alternatively,

anes_clean.query("vote=='Joe Biden'").query('ftbiden < 40')
caseid liveurban vote16 protest vote most_important_issue confecon ideology partyID universal_income family_separation free_college forgive_loans race birthyr sex education weight fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales ftimmig
12 13 City Donald Trump False Joe Biden Assumenda mollit bla Extremely worried Moderate Independent Favor a moderate amount Favor somewhat Oppose a little Neither favor nor oppose White 1994 Female 2-year degree 1.08428147456979 25.0 66.0 31.0 86.0 NaN 53.0 78.0 69.0 21.0 51.0 47.0 70.0 54.0 62 49.0 NaN NaN NaN 65 42.0 26.0 33.0 51.0 53.0 78 61 46 76.0 38.0 36 10.0 67.0 50.0 34.0
63 64 Suburb Hillary Clinton False Joe Biden Climate change and partly because we refuse to... A little worried Liberal Democrat Oppose a little Neither favor nor disagree Oppose a little Favor a little White 1930 Female Post-graduate 1.02996454702489 5.0 76.0 37.0 73.0 64.0 55.0 39.0 67.0 64.0 71.0 67.0 59.0 64.0 66 63.0 50.0 22.0 6.0 21 5.0 50.0 50.0 22.0 26.0 68 59 60 31.0 50.0 87 44.0 22.0 71.0 74.0
65 66 Rural Hillary Clinton False Joe Biden Trump Moderately worried Liberal Democrat Neither favor nor oppose Oppose strongly Oppose a little Oppose a moderate amount White 1952 Female High school graduate 1.02515128827396 0.0 100.0 33.0 34.0 96.0 96.0 42.0 90.0 49.0 21.0 50.0 50.0 0.0 71 50.0 51.0 3.0 0.0 53 0.0 22.0 0.0 61.0 1.0 80 50 30 1.0 53.0 94 12.0 0.0 10.0 76.0
105 106 Town Did not vote False Joe Biden guns Moderately worried NaN NaN Neither favor nor oppose Oppose strongly Favor a little Favor a great deal Other 1996 Female 4-year degree .77435239235677 0.0 51.0 8.0 59.0 73.0 76.0 2.0 53.0 0.0 44.0 87.0 3.0 50.0 52 8.0 33.0 5.0 0.0 4 50.0 2.0 1.0 38.0 37.0 5 51 66 1.0 6.0 30 100.0 2.0 47.0 50.0
129 130 Town Hillary Clinton False Joe Biden Lack of access to healthcare, racism, white na... Very worried Liberal Democrat Favor a great deal Oppose strongly Favor a great deal Favor a great deal White 1977 Female Post-graduate 1.15605850208199 0.0 61.0 9.0 90.0 100.0 15.0 42.0 100.0 64.0 95.0 100.0 100.0 79.0 89 71.0 90.0 0.0 0.0 59 0.0 69.0 6.0 50.0 59.0 88 100 86 27.0 100.0 91 15.0 22.0 83.0 100.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3063 3064 Rural Hillary Clinton False Joe Biden Gun violence A little worried Liberal Democrat Oppose a moderate amount Oppose strongly Favor a great deal Favor a moderate amount White 1957 Male High school graduate .897550307642941 5.0 65.0 21.0 71.0 84.0 34.0 59.0 69.0 59.0 50.0 46.0 39.0 36.0 59 50.0 50.0 50.0 5.0 53 0.0 61.0 29.0 18.0 18.0 97 69 67 59.0 52.0 89 39.0 6.0 17.0 50.0
3069 3070 Suburb Hillary Clinton False Joe Biden ECONOMY Very worried Liberal Democrat Favor a moderate amount Oppose somewhat Favor a great deal Favor a moderate amount White 1983 Male 2-year degree .938881851047225 11.0 71.0 31.0 39.0 99.0 30.0 19.0 30.0 51.0 71.0 94.0 47.0 28.0 51 50.0 51.0 59.0 49.0 61 59.0 69.0 50.0 50.0 50.0 50 69 70 50.0 59.0 60 49.0 51.0 51.0 69.0
3136 3137 Rural Hillary Clinton False Joe Biden Donald J. Trump Moderately worried Liberal Democrat Favor a little Oppose strongly Favor a little Favor a little White 1950 Male Some college .944411233915414 3.0 86.0 22.0 94.0 9.0 94.0 25.0 53.0 58.0 59.0 57.0 59.0 60.0 94 84.0 85.0 11.0 3.0 5 6.0 94.0 5.0 88.0 6.0 92 84 84 76.0 88.0 95 5.0 4.0 53.0 67.0
3146 3147 Suburb Hillary Clinton False Joe Biden The ever-growing populism from both sides of t... Extremely worried Liberal Democrat Favor a great deal Oppose strongly Favor a moderate amount Favor a great deal White 1995 Male 4-year degree 1.08737874806145 0.0 76.0 34.0 87.0 22.0 66.0 62.0 60.0 61.0 61.0 72.0 46.0 85.0 88 82.0 41.0 0.0 1.0 1 0.0 86.0 0.0 84.0 29.0 18 81 77 0.0 35.0 68 4.0 0.0 49.0 86.0
3153 3154 City Donald Trump False Joe Biden The manner in which Donald Trump conducts hims... Moderately worried Moderate Democrat Favor a great deal Oppose strongly Oppose a great deal Oppose a great deal White 1939 Male Some college .83972997938151 6.0 69.0 12.0 20.0 50.0 99.0 13.0 69.0 69.0 69.0 69.0 69.0 31.0 59 51.0 51.0 79.0 1.0 15 2.0 48.0 3.0 54.0 4.0 83 72 70 50.0 75.0 84 13.0 9.0 50.0 69.0

121 rows × 52 columns

Who in their right mind would rate Joe Biden 100 and Trump 100? These 6 people!

anes_clean.query("ftbiden == 100 & fttrump == 100")
caseid liveurban vote16 protest vote most_important_issue confecon ideology partyID universal_income family_separation free_college forgive_loans race birthyr sex education weight fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales ftimmig
267 268 City Donald Trump False Donald Trump Education. A little worried Conservative Republican Favor a little Oppose somewhat Favor a little Favor a great deal White 1959 Female Post-graduate .746904935636401 100.0 0.0 100.0 1.0 4.0 NaN NaN 70.0 90.0 61.0 63.0 15.0 6.0 21 48.0 36.0 49.0 43.0 50 50.0 43.0 39.0 60.0 43.0 58 40 63 90.0 69.0 53 53.0 56.0 54.0 16.0
1526 1527 City Donald Trump False Donald Trump EVERYTHING Not at all worried Conservative Republican Favor a great deal Neither favor nor disagree Neither favor nor oppose Neither favor nor oppose White 1956 Male High school graduate .847649185791497 100.0 99.0 100.0 71.0 81.0 80.0 90.0 99.0 100.0 95.0 91.0 82.0 50.0 98 94.0 89.0 96.0 99.0 71 70.0 78.0 68.0 69.0 47.0 85 77 83 57.0 100.0 100 91.0 88.0 76.0 99.0
1971 1972 Rural Did not vote False Joe Biden Proverty Moderately worried NaN Republican Neither favor nor oppose Oppose strongly Favor a great deal Favor a great deal White 1993 Female 2-year degree .872100489544827 100.0 99.0 100.0 66.0 100.0 60.0 57.0 100.0 100.0 100.0 100.0 100.0 100.0 53 100.0 67.0 100.0 100.0 100 100.0 100.0 99.0 100.0 100.0 100 100 98 100.0 100.0 100 100.0 98.0 100.0 100.0
2271 2272 Town Hillary Clinton False Someone else jobs and homeless and Police just shoting norm... Extremely worried Conservative Democrat Favor a great deal Favor strongly Favor a great deal Favor a great deal White 1980 Male Some college 1.05546596271457 100.0 78.0 100.0 58.0 29.0 5.0 100.0 90.0 94.0 89.0 9.0 88.0 89.0 86 86.0 79.0 79.0 69.0 68 27.0 57.0 7.0 9.0 8.0 68 10 77 5.0 8.0 62 95.0 9.0 78.0 88.0
2408 2409 City Did not vote False Joe Biden Not being the best number one country. Extremely worried Moderate Independent Favor a great deal Favor strongly Oppose a great deal Favor a great deal Black 1995 Male Some college 3.47027368867645 100.0 100.0 100.0 99.0 100.0 99.0 100.0 100.0 100.0 100.0 99.0 75.0 2.0 100 100.0 100.0 99.0 99.0 100 100.0 100.0 100.0 100.0 100.0 100 100 100 100.0 100.0 100 100.0 100.0 100.0 100.0
2721 2722 Rural Hillary Clinton True Joe Biden Racism Extremely worried Liberal Democrat Favor a great deal Favor strongly Favor a great deal Favor a great deal Black 1990 Male High school graduate 2.13773400773957 100.0 98.0 100.0 98.0 99.0 79.0 99.0 100.0 98.0 85.0 82.0 84.0 94.0 90 91.0 97.0 97.0 92.0 88 92.0 97.0 94.0 94.0 88.0 92 93 94 86.0 96.0 88 93.0 94.0 89.0 93.0

I want to see all of the voters that are extremely worried about the economy and either live in rural areas or were born prior to 1950:

anes_clean.query("confecon == 'Extremely worried' & (liveurban == 'Rural' | birthyr < 1950)")
caseid liveurban vote16 protest vote most_important_issue confecon ideology partyID universal_income family_separation free_college forgive_loans race birthyr sex education weight fttrump ftobama ftbiden ftwarren ftsanders ftbuttigieg ftharris ftblack ftwhite fthisp ftasian ftmuslim ftillegal ftjournal ftnato ftun ftice ftnra ftchina ftnkorea ftmexico ftsaudi ftukraine ftiran ftbritain ftgermany ftjapan ftisrael ftfrance ftcanada ftturkey ftrussia ftpales ftimmig
2 3 Rural Hillary Clinton False Joe Biden health care Extremely worried Moderate Democrat Neither favor nor oppose Oppose strongly Oppose a moderate amount Oppose a great deal White 1954 Female High school graduate .966366930694957 0.0 91.0 88.0 15.0 60.0 70.0 68.0 48.0 49.0 49.0 49.0 50.0 39.0 63 66.0 51.0 40.0 2.0 2 2.0 1.0 3.0 59.0 1.0 50 1 1 1.0 51.0 87 50.0 1.0 3.0 69.0
27 28 Town Hillary Clinton False Joe Biden Climate change Extremely worried Liberal Democrat Favor a great deal Oppose strongly Favor a moderate amount Favor a great deal Other 1944 Female 4-year degree 1.01184109114119 2.0 91.0 49.0 96.0 100.0 87.0 76.0 51.0 52.0 50.0 46.0 45.0 62.0 99 99.0 49.0 0.0 0.0 31 6.0 73.0 7.0 64.0 56.0 92 85 78 25.0 87.0 99 38.0 3.0 52.0 96.0
72 73 Rural Hillary Clinton False Joe Biden Climate change Extremely worried Liberal Democrat Favor a little Oppose strongly Favor a great deal Favor a great deal White 1950 Female Post-graduate 1.12291843396482 0.0 99.0 97.0 91.0 81.0 100.0 99.0 89.0 62.0 94.0 83.0 89.0 99.0 99 98.0 100.0 11.0 6.0 37 3.0 100.0 2.0 67.0 6.0 100 96 100 98.0 100.0 99 2.0 3.0 91.0 97.0
117 118 Rural Did not vote False Joe Biden Holding on to our Democracy is our most pressi... Extremely worried Moderate Democrat Favor a great deal Oppose strongly Favor a moderate amount Favor a great deal Black 1949 Male 2-year degree 1.04281941711299 50.0 98.0 96.0 91.0 90.0 88.0 86.0 91.0 90.0 90.0 90.0 87.0 89.0 95 100.0 100.0 60.0 50.0 77 50.0 91.0 50.0 91.0 72.0 93 85 83 81.0 94.0 91 71.0 40.0 83.0 91.0
149 150 Suburb Hillary Clinton False Joe Biden Infrastructure Extremely worried Moderate Democrat Oppose a great deal Oppose strongly Oppose a great deal Oppose a great deal White 1947 Male Post-graduate .826789085004023 0.0 98.0 91.0 1.0 3.0 95.0 1.0 60.0 72.0 68.0 81.0 41.0 0.0 90 90.0 69.0 6.0 0.0 0 0.0 59.0 0.0 50.0 0.0 100 99 50 31.0 60.0 100 0.0 0.0 10.0 100.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3023 3024 Rural Hillary Clinton False Joe Biden Imagation Extremely worried Conservative Democrat Neither favor nor oppose Favor strongly Oppose a great deal Oppose a great deal White 1962 Male High school graduate .878855634357939 49.0 85.0 68.0 66.0 97.0 49.0 54.0 3.0 100.0 5.0 2.0 2.0 2.0 1 99.0 100.0 99.0 99.0 98 0.0 95.0 6.0 9.0 98.0 70 94 96 3.0 6.0 97 1.0 97.0 0.0 1.0
3025 3026 Rural Hillary Clinton False Joe Biden The presidency of Donald J. Trump. Extremely worried Moderate Democrat Favor a little Oppose strongly Oppose a great deal Oppose a great deal Black 1960 Male High school graduate .989348149771041 0.0 100.0 90.0 75.0 70.0 55.0 75.0 60.0 49.0 50.0 50.0 60.0 49.0 50 70.0 75.0 50.0 0.0 50 0.0 49.0 20.0 54.0 50.0 49 50 50 40.0 65.0 70 40.0 0.0 85.0 50.0
3029 3030 Rural Hillary Clinton False Joe Biden racism hate crimes Extremely worried Liberal Democrat Neither favor nor oppose Oppose strongly Favor a great deal Favor a moderate amount White 1951 Male Some college .98338714821771 4.0 99.0 81.0 99.0 92.0 80.0 86.0 83.0 89.0 75.0 71.0 75.0 64.0 72 85.0 76.0 6.0 4.0 56 26.0 59.0 31.0 9.0 16.0 85 94 72 69.0 83.0 94 26.0 5.0 31.0 74.0
3103 3104 Town Donald Trump False Joe Biden climate change Extremely worried Liberal Republican Favor a little Oppose strongly Favor a little Favor a little White 1944 Male 4-year degree 3.0 30.0 96.0 97.0 100.0 96.0 51.0 97.0 97.0 97.0 95.0 96.0 99.0 91 98.0 97.0 50.0 2.0 80 50.0 98.0 72.0 97.0 50.0 97 98 97 40.0 97.0 99 40.0 61.0 98.0 100.0
3115 3116 Suburb Hillary Clinton False Joe Biden Health care crisis Extremely worried Moderate Republican Oppose a great deal Oppose strongly Favor a moderate amount Oppose a little White 1947 Male 4-year degree 4.0 78.0 57.0 55.0 78.0 51.0 51.0 70.0 72.0 72.0 69.0 49.0 15.0 85 55.0 64.0 58.0 41.0 54 0.0 70.0 19.0 18.0 2.0 88 76 78 88.0 79.0 96 41.0 0.0 52.0 88.0

77 rows × 52 columns

8.9. Creating New Columns and Replacing Existing Columns#

8.9.1. Using Arithmetic Operations#

There are many situations in which it makes sense to create new columns based on calculations with existing columns. There are two methods for creating a new column or replace an existing one. The first approach is to define a new column name in a dataframe’s index, and assign it to new values constructed from existing values in the dataframe.

For example, we can create a column that represents the difference between the Biden thermometer and the Trump thermometer, so that negative values (up to -100) represent partisanship for Trump, and positive values (up to 100) represent partisanship for Biden. We can either create a new column that contains these differences, or we can replace an existing column with this new column. To create a new column called partisanship, we can type:

anes_clean['partisanship'] = anes_clean.ftbiden - anes_clean.fttrump
anes_clean[['ftbiden', 'fttrump', 'partisanship']]
ftbiden fttrump partisanship
0 52.0 47.0 5.0
1 41.0 41.0 0.0
2 88.0 0.0 88.0
3 0.0 100.0 -100.0
4 25.0 94.0 -69.0
... ... ... ...
3160 7.0 81.0 -74.0
3161 25.0 35.0 -10.0
3162 50.0 6.0 44.0
3163 95.0 1.0 94.0
3164 70.0 0.0 70.0

3165 rows × 3 columns

The second approach is to use the dataframe’s .assign() method. Within assign(), we write the name of the column we are creating, and we set it equal to an arithmetic or logical expression involving existing columns. The equivalent code that creates a partisanship column using the .assign() method is:

anes_clean = anes_clean.assign(partisanship = anes_clean.ftbiden - anes_clean.fttrump)
anes_clean[['ftbiden', 'fttrump', 'partisanship']]
ftbiden fttrump partisanship
0 52.0 47.0 5.0
1 41.0 41.0 0.0
2 88.0 0.0 88.0
3 0.0 100.0 -100.0
4 25.0 94.0 -69.0
... ... ... ...
3160 7.0 81.0 -74.0
3161 25.0 35.0 -10.0
3162 50.0 6.0 44.0
3163 95.0 1.0 94.0
3164 70.0 0.0 70.0

3165 rows × 3 columns

To replace an existing column with a new version of that column, we use the same syntax, but we write an existing column name to set equal to an expression. For example, to replace the Barack Obama feeling thermometer with a Z-score standardized version of this column (subtracting the mean and dividing by the standard deviation) so that the values of ftobama change to represent the number of standard deviations away from the mean of ftobama. We can type

obama_mean = anes_clean.ftobama.mean()
obama_sd = anes_clean.ftobama.std()
anes_clean['ftobama'] = (anes_clean.ftobama - obama_mean)/obama_sd
anes_clean[['ftbiden', 'fttrump', 'ftobama']]
ftbiden fttrump ftobama
0 52.0 47.0 0.971498
1 41.0 41.0 -0.626842
2 88.0 0.0 0.998137
3 0.0 100.0 -0.094062
4 25.0 94.0 -0.946510
... ... ... ...
3160 7.0 81.0 -0.893232
3161 25.0 35.0 -0.333813
3162 50.0 6.0 -0.600203
3163 95.0 1.0 1.237888
3164 70.0 0.0 1.237888

3165 rows × 3 columns

Then we can reconstruct the original ftobama feature:

anes_clean['ftobama'] = anes_clean.ftobama*obama_sd + obama_mean
anes_clean[['ftbiden', 'fttrump', 'ftobama']]
ftbiden fttrump ftobama
0 52.0 47.0 90.0
1 41.0 41.0 30.0
2 88.0 0.0 91.0
3 0.0 100.0 50.0
4 25.0 94.0 18.0
... ... ... ...
3160 7.0 81.0 20.0
3161 25.0 35.0 41.0
3162 50.0 6.0 31.0
3163 95.0 1.0 100.0
3164 70.0 0.0 100.0

3165 rows × 3 columns

We can also perform both tasks using .assign(). We can replace ftobama with a standardized version of the feature:

anes_clean = anes_clean.assign(ftobama = (anes_clean.ftobama - obama_mean)/obama_sd)
anes_clean[['ftbiden', 'fttrump', 'ftobama']]
ftbiden fttrump ftobama
0 52.0 47.0 0.971498
1 41.0 41.0 -0.626842
2 88.0 0.0 0.998137
3 0.0 100.0 -0.094062
4 25.0 94.0 -0.946510
... ... ... ...
3160 7.0 81.0 -0.893232
3161 25.0 35.0 -0.333813
3162 50.0 6.0 -0.600203
3163 95.0 1.0 1.237888
3164 70.0 0.0 1.237888

3165 rows × 3 columns

Then we can reconstruct the original values of ftobama:

anes_clean = anes_clean.assign(ftobama = anes_clean.ftobama*obama_sd + obama_mean)
anes_clean[['ftbiden', 'fttrump', 'ftobama']]
ftbiden fttrump ftobama
0 52.0 47.0 90.0
1 41.0 41.0 30.0
2 88.0 0.0 91.0
3 0.0 100.0 50.0
4 25.0 94.0 18.0
... ... ... ...
3160 7.0 81.0 20.0
3161 25.0 35.0 41.0
3162 50.0 6.0 31.0
3163 95.0 1.0 100.0
3164 70.0 0.0 100.0

3165 rows × 3 columns

8.9.2. Breaking Continuous Features into Categories#

A useful function in pandas is pd.cut() which creates categories from break points in a continuous-valued column. There are three arguments for pd.cut(): first, the continuous column whose values we want to categorize, second bins takes either an integer to express the number of uniformly spaced categories, or a list of the breakpoints (inclusive for the upper bound but not the lower bound), and labels is a tuple of the labels to assign to each category. To cut the ftbiden column into three categories, we can write

anes_clean['ftbiden_level'] = pd.cut(anes_clean.ftbiden, bins=[-0.1,40,70,100], labels=("dislike", "neutral", "like"))
anes_clean[['ftbiden', 'ftbiden_level']]
ftbiden ftbiden_level
0 52.0 neutral
1 41.0 neutral
2 88.0 like
3 0.0 dislike
4 25.0 dislike
... ... ...
3160 7.0 dislike
3161 25.0 dislike
3162 50.0 neutral
3163 95.0 like
3164 70.0 neutral

3165 rows × 2 columns

Or equivalently,

anes_clean = anes_clean.assign(ftbiden_level = 
                               pd.cut(anes_clean.ftbiden, 
                                      bins=[-0.1,40,70,100], 
                                      labels=("dislike", "neutral", "like")))
anes_clean[['ftbiden', 'ftbiden_level']]
ftbiden ftbiden_level
0 52.0 neutral
1 41.0 neutral
2 88.0 like
3 0.0 dislike
4 25.0 dislike
... ... ...
3160 7.0 dislike
3161 25.0 dislike
3162 50.0 neutral
3163 95.0 like
3164 70.0 neutral

3165 rows × 2 columns

8.9.3. Indexing Versus .assign()#

The advantage of using .assign() as opposed to writing new columns into the dataframe’s index is that we can create or replace multiple columns within one call to .assign() by separating each expression with commas. We can calculate age from birthyr and we can also generate a column containing the square of age (which is useful to place a curvilinear effect into a linear regression model):

anes_clean = anes_clean.assign(age = 2020 - anes_clean.birthyr,
                              age2 = (2020 - anes_clean.birthyr)**2)
anes_clean[['vote', 'ftbiden', 'fttrump', 'age', 'age2']]
vote ftbiden fttrump age age2
0 Joe Biden 52.0 47.0 51 2601
1 Donald Trump 41.0 41.0 78 6084
2 Joe Biden 88.0 0.0 66 4356
3 Donald Trump 0.0 100.0 41 1681
4 Donald Trump 25.0 94.0 80 6400
... ... ... ... ... ...
3160 Donald Trump 7.0 81.0 72 5184
3161 Someone else 25.0 35.0 24 576
3162 Probably will not vote 50.0 6.0 40 1600
3163 Joe Biden 95.0 1.0 60 3600
3164 Joe Biden 70.0 0.0 60 3600

3165 rows × 5 columns

A warning: if you want to perform a calculation that uses a column you create, you must create the columns you will use first, then use them in a separate call to .assign(). Suppose that I had called age directly to create age2 as follows:

anes_clean.assign(age = 2020 - anes_clean.birthyr,
                  age2 = anes_clean.age**2)

This code will not work because age is not yet defined until the end of the entire call to .assign(), so it cannot be used to create age2.

8.9.4. Changing a Column’s Data Type#

One important way we might need to create a new column or revise an existing one is by casting the column to a different data type. Every column in the dataframe has a data type, which we can see listed with the .dtypes attribute. If we want to change the data type, we can use the .astype() method applied to the column whose type we want to change. To convert the column’s values to strings type .astype('str'), to convert the column’s values to integers type .astype('int'), and to convert the column’s values to floats type .astype('float'). pandas also recognizes a categorical data type, and to convert a column to categorical type .astype('category'). As an example, let’s convert the Joe Biden thermometer scores to each data type:

anes_clean = anes_clean.assign(ftbiden_float = anes_clean.ftbiden.astype('float'),
                              ftbiden_cat = anes_clean.ftbiden.astype('category'),
                              ftbiden_str = anes_clean.ftbiden.astype('str'))
anes_clean[['ftbiden', 'ftbiden_float', 'ftbiden_cat', 'ftbiden_str']].dtypes
ftbiden           float64
ftbiden_float     float64
ftbiden_cat      category
ftbiden_str        object
dtype: object

By default, missing values np.nan are stored as floats, so it is not possible to convert a column to integer if there are missing values.

We can convert all of the categorical columns in anes_clean to categorical data types as follows:

catcolumns = ['liveurban', 'vote16', 'protest', 'vote','confecon', 'ideology', 'partyID',
       'universal_income', 'family_separation', 'free_college','forgive_loans', 'race', 'sex', 'education']
anes_clean[catcolumns] = anes_clean[catcolumns].astype('category')
anes_clean.dtypes
caseid                     int64
liveurban               category
vote16                  category
protest                 category
vote                    category
most_important_issue      object
confecon                category
ideology                category
partyID                 category
universal_income        category
family_separation       category
free_college            category
forgive_loans           category
race                    category
birthyr                    int64
sex                     category
education               category
weight                    object
fttrump                  float64
ftobama                  float64
ftbiden                  float64
ftwarren                 float64
ftsanders                float64
ftbuttigieg              float64
ftharris                 float64
ftblack                  float64
ftwhite                  float64
fthisp                   float64
ftasian                  float64
ftmuslim                 float64
ftillegal                float64
ftjournal                  int64
ftnato                   float64
ftun                     float64
ftice                    float64
ftnra                    float64
ftchina                    int64
ftnkorea                 float64
ftmexico                 float64
ftsaudi                  float64
ftukraine                float64
ftiran                   float64
ftbritain                  int64
ftgermany                  int64
ftjapan                    int64
ftisrael                 float64
ftfrance                 float64
ftcanada                   int64
ftturkey                 float64
ftrussia                 float64
ftpales                  float64
ftimmig                  float64
partisanship             float64
ftbiden_level           category
age                        int64
age2                       int64
ftbiden_float            float64
ftbiden_cat             category
ftbiden_str               object
dtype: object

8.9.5. Using Logical Operators#

Logical expressions can be used to create new columns. Columns that are set equal to a logical condition are populated by values that are either True when the logical condition is true, or False when the logical condition is false. To create a binary column indicating the participants who like Biden more than Trump, we can type

anes_clean['prefersbiden'] = anes_clean.ftbiden > anes_clean.fttrump
anes_clean[['vote','ftbiden', 'fttrump', 'prefersbiden']]
vote ftbiden fttrump prefersbiden
0 Joe Biden 52.0 47.0 True
1 Donald Trump 41.0 41.0 False
2 Joe Biden 88.0 0.0 True
3 Donald Trump 0.0 100.0 False
4 Donald Trump 25.0 94.0 False
... ... ... ... ...
3160 Donald Trump 7.0 81.0 False
3161 Someone else 25.0 35.0 False
3162 Probably will not vote 50.0 6.0 True
3163 Joe Biden 95.0 1.0 True
3164 Joe Biden 70.0 0.0 True

3165 rows × 4 columns

Or using .assign():

anes_clean = anes_clean.assign(prefersbiden = anes_clean.ftbiden > anes_clean.fttrump)
anes_clean[['vote','ftbiden', 'fttrump', 'prefersbiden']]
vote ftbiden fttrump prefersbiden
0 Joe Biden 52.0 47.0 True
1 Donald Trump 41.0 41.0 False
2 Joe Biden 88.0 0.0 True
3 Donald Trump 0.0 100.0 False
4 Donald Trump 25.0 94.0 False
... ... ... ... ...
3160 Donald Trump 7.0 81.0 False
3161 Someone else 25.0 35.0 False
3162 Probably will not vote 50.0 6.0 True
3163 Joe Biden 95.0 1.0 True
3164 Joe Biden 70.0 0.0 True

3165 rows × 4 columns

Logical expressions can work in two ways: elementwise or objectwise. When a logical expression is evaluated elementwise, it matches the corresponding elements in multiple columns and returns a column of equal length that is populated by True and False values depending on the values on the same row. When a logical expression is evaluated objectwise, it considers whether a statement is true regarding a column as a whole. For example, the == sign asks whether the first object is equal to the second object. If I define two lists, [1,2,3] and [3,2,1] and evaluate them using ==, I get:

[1,2,3] == [3,2,1]
False

The output is false because [1,2,3] == [3,2,1] is evaluated objectwise. The question Python answered was: is the list [1,2,3] the same as the list [3,2,1]? These two lists are not the same, so the answer is False. If we convert these two lists to numpy arrays instead, then the same comparison is elementwise:

np.array([1,2,3]) == np.array([3,2,1])
array([False,  True, False])

In this case, we compare corresponding elements and find that the first elements are not the same, the second elements are the same, and the third elements are not the same, so the answer is a list: [False, True, False]. Because pandas dataframes are built using numpy under the hood, individual columns are numpy arrays, and some logical operators - namely <, <=, >, >=, ~, &, and | - work elementwise. That’s why the commands listed above to generate Boolean features in anes_clean work.

However, some operators do not work elementwise, even within numpy arrays. Python includes two versions of “and”, for example: in addition to &, there is also and. While & works elementwise, and only works objectwise. For example the following expression

(np.array([1,2,3,4]) >= np.array([4,3,2,1])) & (np.array([1,2,3,4]) == np.array([5,4,3,2]))
array([False, False,  True, False])

yields an array of logical values, but switching the “and” operator:

(np.array([1,2,3,4]) >= np.array([4,3,2,1])) and (np.array([1,2,3,4]) == np.array([5,4,3,2]))

yields an error: “The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()”. The only really important logical operator we will want to use that does not work elementwise in pandas is in. To create a new column that uses an objectwise operator like in, we have to loop across the rows of the dataframe using the .apply() method and a lambda function. lambda defines the operation that will be evaluated on each row, and constructs the sequence of logical values one row at a time. Using a loop is computationally inefficient, but it gets the job done.

For example, if we want to create the worried_econ column using in, we can use the following code:

anes_clean['worried_econ'] = anes_clean.confecon.apply(
        lambda x: x in ["Moderately worried","Extremely worried"]
    )
anes_clean[['confecon', 'worried_econ']]    
confecon worried_econ
0 A little worried False
1 A little worried False
2 Extremely worried True
3 A little worried False
4 Not at all worried False
... ... ...
3160 A little worried False
3161 Extremely worried True
3162 Very worried False
3163 Moderately worried True
3164 Extremely worried True

3165 rows × 2 columns

The first line creates the worried_econ column and sets it equal to the output of the loop that is applied to the rows of confecon. Inside the loop, lambda x defines x as an index that represents each individual row. The function x in ["Moderately worried","Extremely worried"] returns True if the value of confecon on a particular row is “Moderately worried” or “Extremely worried” and False otherwise.

As another example, let’s create a column that identifies the voters that favor a universal basic income, at least a little, and also favor free college tuition. In this case, we have to specify that axis=1 so that the loop works down columns and applies the function on every row in the dataframe. The following code works:

anes_clean['favor_both'] = anes_clean.apply(
    lambda x: x['universal_income'] in ["Favor a little","Favor a moderate amount","Favor a great deal"] and
    x['free_college'] in ["Favor a little","Favor a moderate amount","Favor a great deal"],
    axis=1
)
anes_clean[['universal_income', 'free_college', 'favor_both']]
universal_income free_college favor_both
0 Favor a moderate amount Favor a moderate amount True
1 Oppose a moderate amount Oppose a little False
2 Neither favor nor oppose Oppose a moderate amount False
3 Neither favor nor oppose Favor a little False
4 Oppose a great deal Oppose a great deal False
... ... ... ...
3160 Oppose a great deal Oppose a great deal False
3161 Favor a great deal Favor a little True
3162 Oppose a great deal Oppose a great deal False
3163 Favor a moderate amount Neither favor nor oppose False
3164 Oppose a great deal Oppose a great deal False

3165 rows × 3 columns

8.10. Data Aggregation#

Data aggregation is the process of collapsing a dataframe to have one row for every group of a given categorical column, where other columns are summarized with statistics like the sum, mean, and median of values within each group. In pandas, data aggregation follows a split-apply-combine approach. First, the data are split into subsets for every group in the grouping column. Then a function, such as the mean, is applied to the same columns in each subset and each subset is compressed to have just one row. Then the subsets are combined into the final resulting dataframe.

The general syntax for aggregating a dataframe is

df.groupby('groupcolumn').aggfunctions.sort_values()

Commands to aggregate dataframes can get confusing very quickly. It helps to break down the syntax for data aggregation into parts for each method listed in the syntax. First, df is the name of the dataframe we want to compress. Second, .groupby('groupcolumn') specifies the column whose categories will define the rows of the aggregated dataframe. If more than one column defines these groups (examples below), then the syntax becomes .groupby(['groupcolumn1', 'groupcolumn2']). Third, .aggfunctions defines how other columns in the data can be included and summarized in the aggregated data. Finally, .sort_values() is optional, but often helps to generate a better presentation for the aggregated data table.

As an example, let’s collapse the ANES data by the candidates that people report they will vote for. We start with anes_clean and set the grouping variable with .groupby('vote'). We apply the .size() function, which reports the number of rows in each group, and we use .sort_values(ascending=False) to list these counts from biggest to smallest (no by argument is needed because there is only one column in the aggregated data). In all, this command provides a tally of people’s voting intentions as of December 2019:

anes_clean.groupby('vote').size().sort_values(ascending=False)
vote
Joe Biden                 1288
Donald Trump              1273
Someone else               321
Probably will not vote     283
dtype: int64

So according to the ANES data, the election is close, but Joe Biden has the most votes in the sample.

To use aggregation functions other than .size(), the best option is to use the .agg() method instead. .agg() takes a dictionary as its argument, and this dictionary should contain the names of the columns we want to summarize, as keys, and the functions we want to use to collapse these columns, as values. For example, we can construct a table in which the rows are the voting groups, and the columns contain the mean feeling thermometers for Trump, Biden, immigrants, and journalists:

anes_clean.groupby('vote').agg({'fttrump':'mean',
                               'ftbiden':'mean',
                               'ftimmig':'mean',
                               'ftjournal':'mean'})
fttrump ftbiden ftimmig ftjournal
vote
Donald Trump 87.835303 15.743286 68.801887 26.502749
Joe Biden 8.450549 70.724649 75.315217 72.365683
Probably will not vote 28.750000 39.595238 61.734043 49.706714
Someone else 23.126582 34.022293 67.503125 52.386293

There are aggregation functions other than 'mean' available: count gives the number of nonmissing values within the group, sum takes the sum of the values in each group, min and max report the minimum and maximum values, median reports the 50th percentile, std and var calculate the standard deviation and variance, sem takes the standard error of the mean, and first and last report the first and last value that appear in the subset defined by each group. For example, we can report all of these statistics for ftbiden across voting groups. If we want more than one statistic for a column, we can specify all of these functions in a list within the dictionary as follows:

anes_clean.groupby('vote').agg({'ftbiden':['count','mean','sum','min','max','median','std','var','sem','first','last']})
ftbiden
count mean sum min max median std var sem first last
vote
Donald Trump 1266 15.743286 19931.0 0.0 100.0 6.0 20.644470 426.194125 0.580212 41.0 7.0
Joe Biden 1282 70.724649 90669.0 0.0 100.0 73.0 22.384124 501.049025 0.625167 52.0 70.0
Probably will not vote 252 39.595238 9978.0 0.0 100.0 48.0 25.337303 641.978941 1.596100 29.0 50.0
Someone else 314 34.022293 10683.0 0.0 100.0 32.0 24.396672 595.197585 1.376784 20.0 25.0

More than one column may define the groups. For example, we might want to count the number of voters for each candidate in cities, in rural areas, in suburbs, and in towns. In that case, we can specify groupby(['vote','liveurban']) and .size() to count the number of voters of each type:

anes_clean.groupby(['vote','liveurban']).size()
vote                    liveurban
Donald Trump            City         235
                        Rural        314
                        Suburb       465
                        Town         259
Joe Biden               City         401
                        Rural        204
                        Suburb       462
                        Town         221
Probably will not vote  City          88
                        Rural         61
                        Suburb        83
                        Town          51
Someone else            City          92
                        Rural         64
                        Suburb       107
                        Town          58
dtype: int64

This table looks nicer as a pandas dataframe:

pd.DataFrame(anes_clean.groupby(['vote','liveurban']).size())
0
vote liveurban
Donald Trump City 235
Rural 314
Suburb 465
Town 259
Joe Biden City 401
Rural 204
Suburb 462
Town 221
Probably will not vote City 88
Rural 61
Suburb 83
Town 51
Someone else City 92
Rural 64
Suburb 107
Town 58

The table looks even nicer if we also apply the .unstack() method to move the data into different columns:

pd.DataFrame(anes_clean.groupby(['vote','liveurban']).size().unstack())
liveurban City Rural Suburb Town
vote
Donald Trump 235 314 465 259
Joe Biden 401 204 462 221
Probably will not vote 88 61 83 51
Someone else 92 64 107 58

Biden has more voters than Trump in cities, and Trump has more in rural areas. Trump has a slight lead among people in towns, and Trump and Biden are within three votes among people in suburbs. It looks like the election will depend on voters from the suburbs.

The standard functions in .agg() will usually suffice, but there are situations in which we might want to use a custom aggregation function. For that, we can use .apply() and a lambda function. The following code searches the most_important_issue column, which is a free text entry field in which respondents wrote their answer for the most important issue in the country today, and counts the number of times the word “trump” is mentioned in these responses:

anes_clean.groupby('vote').most_important_issue.apply(
    lambda x: x.str.contains("trump", case=False).sum()
).sort_values(ascending=False)
vote
Joe Biden                 325
Donald Trump               59
Someone else               25
Probably will not vote     10
Name: most_important_issue, dtype: int64

Biden voters mentioned “trump” 325 times, and Trump voters only mentioned “trump” 59 times. This code groups by voting group, then selects the most_important_issue column and uses the .apply() method on this column which creates a loop across groups. Within .apply(), the lambda function denotes a token x that represents the most_important_issue column within each group. On this column, the function uses the .str.contains("trump", case=False) function, which outputs True if the string “trump” is found within each value of most_important_issue without case sensitivity, and False otherwise. Finally,the .sum() function counts the number of times these searches were True.

Finally, we can save the cleaned ANES data as a separate CSV:

anes_clean.to_csv('anes_pilot2019_clean.csv', index=False)