{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Reshaping and Merging Data and Working with Strings, Dates, and Times" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{contents} Table of Contents\n", ":depth: 4\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "## Introduction: `pandas` or SQL?\n", "\n", "As we saw in module 7, read operations in SQL not only extract data from a database, but they can select and rename columns, filter and sort rows, join tables, and aggregate data. With `pandas`, we can also select and rename columns, filter and sort rows, join tables, and aggregate data. So the question is, should we be using SQL or `pandas` to perform all these data manipulation steps? \n", "\n", "SQL is sometimes referred to as **server-side** data manipulation, because databases are often stored on remote servers and SQL queries are processed on the server instead on on a local machine. Data manipulation that is conducted using `pandas` on a local Python installation is called **client-side** data manipulation.\n", "\n", "The question of SQL vs. `pandas` (or SQL vs. the tidyverse in R) is the subject of a lot of debate among professionals who use data. The question [comes up](https://www.quora.com/In-what-situations-should-you-use-SQL-instead-of-Pandas-as-a-data-scientist) [frequently](https://towardsdatascience.com/sql-and-pandas-268f634a4f5d) on [various](https://www.reddit.com/r/Python/comments/1tqjt4/why_do_you_use_pandas_instead_of_sql/) [coding forums](https://datascience.stackexchange.com/questions/34357/why-do-people-prefer-pandas-to-sql). Some [blog posts](https://blog.thedataincubator.com/2018/05/sqlite-vs-pandas-performance-benchmarks/) have tried to compare SQL and `pandas` in terms of the [speed](https://wesmckinney.com/blog/high-performance-database-joins-with-pandas-dataframe-more-benchmarks/) with which they complete equivalent operations, with differing results. [Tina Wenzel and Kavya Gupta](https://medium.com/carwow-product-engineering/sql-vs-pandas-how-to-balance-tasks-between-server-and-client-side-9e2f6c95677) note that many factors influence the relative speed of SQL and `pandas` operations, including the configuration of a PostgreSQL database and the bandwidth available in a network connection. They take the mixed evidence into account and conclude that\n", "\n", "> SQL is the best tool to use for basic data retrieval and the better you know it, the more it will speed up your workflow. More advanced data manipulation tasks can be performed both on the server and client side and it is up to the analyst to balance the workload optimally.\n", "\n", "In short, the existing evidence does not overwhelmingly support one option or the other as best practice for data manipulation. The reality is that both SQL and `pandas` are extremely useful and widely-used, and both tools will become part of your workflow. It will take some time and experience with end-to-end projects in data science to learn how to balance SQL and `pandas` in a way that is most comfortable for you in your workflow. But at this stage, there are some important points to keep in mind when thinking about these tools. \n", "\n", "First, there are many situations in which the question of SQL vs. `pandas` might be moot. For a given project, our data might not come from a database, but instead from a CSV file, from a JSON document acquired via an API, or from raw HTML that we scraped from a webpage. So in order to use SQL, we would have to take the additional step of creating a database. If we hold ourselves to the principles that E. F. Codd and others laid out about the organization of relational databases, it can take a significant amount of work to create this database. If there is no database involved for a specific data project, there is no role for SQL, but because `pandas` works on dataframes it can be a primary tool for data manipulation regardless of the original source for the data.\n", "\n", "Second, while there are differences in speed, these differences only become a significant factor for projects that involve big data, and in those cases, we will almost certainly be working with data stored on remote servers. If the data are organized using a database, then SQL may well be faster than `pandas`, but it very much depends on how the database is [configured](https://severalnines.com/database-blog/guide-postgresql-server-configuration-parameters) and on the myriad factors that determine the speed with which code runs through a remote connection. `pandas` can also be used in scripts or Jupyter notebooks that are run on remote servers. Sometimes it makes sense to pull selections of remotely stored data into a local environment so that we can manipulate the data without having to seek permission from a database manager, and in that case, a mix of SQL to choose a selection and `pandas` to manipulate the local data can be very effective.\n", "\n", "Third, `pandas` simply has more functionality and flexibility than SQL. For example, it is fairly straightforward to reshape (e.g. pivot) data using `pandas`, and it is [much more difficult to reshape data](https://stackoverflow.com/questions/2444708/sqlite-long-to-wide-formats) in SQL. `pandas` has better functionality for working with strings and time and date features than SQL, and `pandas`, being part of a Python environment, works well with any other Python package that works with dataframes or arrays. In contrast, while various DBMSs add specific additions to the base SQL language, SQL extensions tend to be fairly limited because of the inherent tension between expanding the functionality of a query language and staying close enough to base SQL to still be considered SQL. The easiest way to bring SQL query results into a Python enviromnent uses an `sqlalchemy` engine and the `pd.read_sql_query()` funtion from `pandas`. \n", "\n", "Fourth, both `pandas` and SQL enable us to work as part of larger teams that share tools, but we might choose or be required to use one tool over the other to work better as part of the team. `pandas` is essential for projects in which the whole team works within Python. SQL is readable and usable for people who do not use Python but still work with databases.\n", "\n", "Fifth, and most importantly, the choice of SQL vs. `pandas` should be made based on how comfortable we feel with each tool. Both SQL and `pandas` can perform data manipulation correctly, and it will probably be the case that we can remember the code with one tool better than with the other. We should try as much as we can to do the work that comprises 80% of our time as data scientists more quickly.\n", "\n", "For now, we need to practice both `pandas` and SQL and get comfortable with these tools, and we need to be flexible in the future as different situations will call for SQL or `pandas`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Joining Dataframes\n", "Joining dataframes is also called merging dataframes, and I will use the words \"join\" and \"merge\" interchangeably below. Every kind of merge that is possible in SQL is possible in `pandas`: inner, outer, left, right, natural, cross, and anti-joins. One important difference between joining in SQL and merging in `pandas` is that dataframes might not be as carefully curated as data tables in a relational database, and we should not assume that the join worked properly even if there is no error. Primary keys might not uniquely identify rows in general, and joins might turn into cross joins. Some of values of keys that should match might not match due to differences in coding and spelling. And if we attempt a natural join, the wrong columns might be automatically selected as the keys.\n", "\n", "Too many discussions of merging data provide clean examples. Here I will show you how merging works when the data contain some common problems that may invalidate the merge. In the following discussion, we will discuss how to perform merges in `pandas`, and also how to check that the merge worked in the way we want to.\n", "\n", "First, for the following examples, we load these packages:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example: Merging Data on U.S. State Election Results, Income, Economies, and Area\n", "The \"state_elections.csv\" file contains information about the result of presidential elections by state for every presidential election between 1964 and 2004. In this dataset, the primary keys are `State` and `year`:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " | State | \n", "year | \n", "demvote | \n", "repvote | \n", "wallacevote | \n", "dempercent | \n", "reppercent | \n", "population | \n", "
---|---|---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "1964 | \n", "210732 | \n", "479085 | \n", "0 | \n", "30.54897 | \n", "69.45103 | \n", "1919000 | \n", "
1 | \n", "Alabama | \n", "1968 | \n", "196579 | \n", "146923 | \n", "691425 | \n", "18.99448 | \n", "81.00552 | \n", "1993000 | \n", "
2 | \n", "Alabama | \n", "1972 | \n", "256923 | \n", "728701 | \n", "0 | \n", "26.06704 | \n", "73.93296 | \n", "3540080 | \n", "
3 | \n", "Alabama | \n", "1976 | \n", "659170 | \n", "504070 | \n", "0 | \n", "56.66673 | \n", "43.33327 | \n", "3737204 | \n", "
4 | \n", "Alabama | \n", "1980 | \n", "636730 | \n", "654192 | \n", "0 | \n", "49.32366 | \n", "50.67634 | \n", "3894025 | \n", "
\n", " | stcode | \n", "year | \n", "income | \n", "p10income | \n", "p20income | \n", "p30income | \n", "p40income | \n", "p50income | \n", "p60income | \n", "p70income | \n", "... | \n", "wom_p90income | \n", "wom_meanincome | \n", "wom_minincome | \n", "wom_maxincome | \n", "wom_sdincome | \n", "wom_ineqincome | \n", "wom_gini_income | \n", "wom_n_income | \n", "wom_nwgt_income | \n", "medincome | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "AL | \n", "1964 | \n", "89.83488 | \n", "3269.85 | \n", "5731.07 | \n", "7988.87 | \n", "10318.3 | \n", "13189.1 | \n", "16007.3 | \n", "18744.4 | \n", "... | \n", "24233.0 | \n", "11400.0 | \n", "58.13953 | \n", "72674.42 | \n", "1796.89 | \n", "29.53152 | \n", "0.473738 | \n", "175.0 | \n", "418494.1 | \n", "76.68081 | \n", "
1 | \n", "AL | \n", "1968 | \n", "92.18238 | \n", "4469.95 | \n", "7455.28 | \n", "10050.30 | \n", "12792.1 | \n", "15580.2 | \n", "18392.4 | \n", "21310.7 | \n", "... | \n", "26287.5 | \n", "12005.3 | \n", "NaN | \n", "NaN | \n", "1968.78 | \n", "27.40979 | \n", "0.485090 | \n", "NaN | \n", "NaN | \n", "80.72643 | \n", "
2 | \n", "AL | \n", "1972 | \n", "94.87543 | \n", "6734.11 | \n", "10314.80 | \n", "13336.30 | \n", "16421.5 | \n", "19088.9 | \n", "22141.6 | \n", "25410.7 | \n", "... | \n", "30278.0 | \n", "14667.9 | \n", "NaN | \n", "NaN | \n", "8604.25 | \n", "17.83577 | \n", "0.457932 | \n", "NaN | \n", "NaN | \n", "82.27975 | \n", "
3 | \n", "AL | \n", "1976 | \n", "67.53671 | \n", "7759.81 | \n", "11176.60 | \n", "13823.20 | \n", "16431.8 | \n", "18982.8 | \n", "21923.5 | \n", "25180.8 | \n", "... | \n", "31119.2 | \n", "15362.5 | \n", "NaN | \n", "NaN | \n", "12842.20 | \n", "15.77765 | \n", "0.454074 | \n", "NaN | \n", "NaN | \n", "60.07215 | \n", "
4 | \n", "AL | \n", "1980 | \n", "46.29869 | \n", "7602.15 | \n", "10637.00 | \n", "13532.60 | \n", "16279.6 | \n", "19111.8 | \n", "21802.5 | \n", "25190.6 | \n", "... | \n", "29623.1 | \n", "14804.2 | \n", "28.38428 | \n", "120196.50 | \n", "5944.71 | \n", "14.52640 | \n", "0.436961 | \n", "543.0 | \n", "711278.2 | \n", "41.72882 | \n", "
5 rows × 55 columns
\n", "\n", " | fips | \n", "year | \n", "GDP | \n", "GDPpc | \n", "Private | \n", "Agriculture | \n", "Farms | \n", "Mining | \n", "Utilities | \n", "Construction | \n", "... | \n", "Construction_share | \n", "Manufacturing_share | \n", "Finance_Insurance_share | \n", "Legal_share | \n", "Education_share | \n", "Health_share | \n", "Government_share | \n", "Government_federal_share | \n", "Government_military_share | \n", "Government_statelocal_share | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "1964 | \n", "8201 | \n", "4273.580 | \n", "6900 | \n", "312 | \n", "283 | \n", "115 | \n", "235 | \n", "379 | \n", "... | \n", "4.621387 | \n", "28.22827 | \n", "11.41324 | \n", "0.402390 | \n", "0.256066 | \n", "1.902207 | \n", "15.86392 | \n", "6.291915 | \n", "2.402146 | \n", "7.182051 | \n", "
1 | \n", "1 | \n", "1968 | \n", "10949 | \n", "5493.728 | \n", "9095 | \n", "294 | \n", "253 | \n", "133 | \n", "294 | \n", "499 | \n", "... | \n", "4.557494 | \n", "28.74235 | \n", "10.67677 | \n", "0.429263 | \n", "0.365330 | \n", "2.228514 | \n", "16.93305 | \n", "5.945748 | \n", "2.630377 | \n", "8.356928 | \n", "
2 | \n", "1 | \n", "1972 | \n", "15336 | \n", "4332.105 | \n", "12696 | \n", "481 | \n", "418 | \n", "223 | \n", "435 | \n", "702 | \n", "... | \n", "4.577465 | \n", "26.05634 | \n", "11.48279 | \n", "0.469484 | \n", "0.443401 | \n", "2.595201 | \n", "17.21440 | \n", "5.692488 | \n", "2.679969 | \n", "8.841941 | \n", "
3 | \n", "1 | \n", "1976 | \n", "24206 | \n", "6477.035 | \n", "19988 | \n", "781 | \n", "683 | \n", "584 | \n", "714 | \n", "1281 | \n", "... | \n", "5.292076 | \n", "24.85334 | \n", "11.50541 | \n", "0.479220 | \n", "0.359415 | \n", "2.986863 | \n", "17.42543 | \n", "5.787821 | \n", "2.255639 | \n", "9.386103 | \n", "
4 | \n", "1 | \n", "1980 | \n", "36006 | \n", "9246.474 | \n", "29567 | \n", "674 | \n", "542 | \n", "1351 | \n", "1228 | \n", "1588 | \n", "... | \n", "4.410376 | \n", "24.60423 | \n", "11.63417 | \n", "0.649892 | \n", "0.352719 | \n", "3.660501 | \n", "17.88313 | \n", "5.782370 | \n", "2.171860 | \n", "9.928901 | \n", "
5 rows × 36 columns
\n", "\n", " | state | \n", "area_sqmi | \n", "area_sqkm | \n", "landarea_sqmi | \n", "landarea_sqkm | \n", "water_sqmi | \n", "water_sqkm | \n", "percent_water | \n", "
---|---|---|---|---|---|---|---|---|
0 | \n", "Alaska | \n", "663,267.26 | \n", "1,717,854 | \n", "571,951.26 | \n", "1,481,347 | \n", "91,316.00 | \n", "236,507 | \n", "13.77 | \n", "
1 | \n", "Texas | \n", "268,580.82 | \n", "695,621 | \n", "261,797.12 | \n", "678,051 | \n", "6,783.70 | \n", "17,570 | \n", "2.53 | \n", "
2 | \n", "California | \n", "163,695.57 | \n", "423,970 | \n", "155,939.52 | \n", "403,882 | \n", "7,736.23 | \n", "20,037 | \n", "4.73 | \n", "
3 | \n", "Montana | \n", "147,042.40 | \n", "380,838 | \n", "145,552.43 | \n", "376,979 | \n", "1,489.96 | \n", "3,859 | \n", "1.01 | \n", "
4 | \n", "New Mexico | \n", "121,589.48 | \n", "314,915 | \n", "121,355.53 | \n", "314,309 | \n", "233.96 | \n", "606 | \n", "0.19 | \n", "
\n", " | fips | \n", "State | \n", "stcode | \n", "
---|---|---|---|
0 | \n", "1 | \n", "Alabama | \n", "AL | \n", "
1 | \n", "2 | \n", "Alaska | \n", "AK | \n", "
2 | \n", "4 | \n", "Arizona | \n", "AZ | \n", "
3 | \n", "5 | \n", "Arkansas | \n", "AR | \n", "
4 | \n", "6 | \n", "California | \n", "CA | \n", "
\n", " | State | \n", "year | \n", "demvote | \n", "repvote | \n", "wallacevote | \n", "dempercent | \n", "reppercent | \n", "population | \n", "fips | \n", "stcode | \n", "
---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "1964 | \n", "210732 | \n", "479085 | \n", "0 | \n", "30.54897 | \n", "69.45103 | \n", "1919000 | \n", "1 | \n", "AL | \n", "
1 | \n", "Alabama | \n", "1968 | \n", "196579 | \n", "146923 | \n", "691425 | \n", "18.99448 | \n", "81.00552 | \n", "1993000 | \n", "1 | \n", "AL | \n", "
2 | \n", "Alabama | \n", "1972 | \n", "256923 | \n", "728701 | \n", "0 | \n", "26.06704 | \n", "73.93296 | \n", "3540080 | \n", "1 | \n", "AL | \n", "
3 | \n", "Alabama | \n", "1976 | \n", "659170 | \n", "504070 | \n", "0 | \n", "56.66673 | \n", "43.33327 | \n", "3737204 | \n", "1 | \n", "AL | \n", "
4 | \n", "Alabama | \n", "1980 | \n", "636730 | \n", "654192 | \n", "0 | \n", "49.32366 | \n", "50.67634 | \n", "3894025 | \n", "1 | \n", "AL | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
556 | \n", "Wyoming | \n", "1988 | \n", "67113 | \n", "106867 | \n", "0 | \n", "38.57512 | \n", "61.42488 | \n", "465080 | \n", "56 | \n", "WY | \n", "
557 | \n", "Wyoming | \n", "1992 | \n", "68160 | \n", "79347 | \n", "0 | \n", "46.20798 | \n", "53.79202 | \n", "466251 | \n", "56 | \n", "WY | \n", "
558 | \n", "Wyoming | \n", "1996 | \n", "77934 | \n", "105388 | \n", "0 | \n", "42.51208 | \n", "57.48792 | \n", "488167 | \n", "56 | \n", "WY | \n", "
559 | \n", "Wyoming | \n", "2000 | \n", "60481 | \n", "147947 | \n", "0 | \n", "29.01769 | \n", "70.98231 | \n", "493782 | \n", "56 | \n", "WY | \n", "
560 | \n", "Wyoming | \n", "2004 | \n", "70776 | \n", "167629 | \n", "0 | \n", "29.68730 | \n", "70.31271 | \n", "506529 | \n", "56 | \n", "WY | \n", "
561 rows × 10 columns
\n", "\n", " | State | \n", "year | \n", "demvote | \n", "repvote | \n", "wallacevote | \n", "dempercent | \n", "reppercent | \n", "population | \n", "fips | \n", "stcode | \n", "matched | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "1964 | \n", "210732 | \n", "479085 | \n", "0 | \n", "30.54897 | \n", "69.45103 | \n", "1919000 | \n", "1 | \n", "AL | \n", "both | \n", "
1 | \n", "Alabama | \n", "1968 | \n", "196579 | \n", "146923 | \n", "691425 | \n", "18.99448 | \n", "81.00552 | \n", "1993000 | \n", "1 | \n", "AL | \n", "both | \n", "
2 | \n", "Alabama | \n", "1972 | \n", "256923 | \n", "728701 | \n", "0 | \n", "26.06704 | \n", "73.93296 | \n", "3540080 | \n", "1 | \n", "AL | \n", "both | \n", "
3 | \n", "Alabama | \n", "1976 | \n", "659170 | \n", "504070 | \n", "0 | \n", "56.66673 | \n", "43.33327 | \n", "3737204 | \n", "1 | \n", "AL | \n", "both | \n", "
4 | \n", "Alabama | \n", "1980 | \n", "636730 | \n", "654192 | \n", "0 | \n", "49.32366 | \n", "50.67634 | \n", "3894025 | \n", "1 | \n", "AL | \n", "both | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
556 | \n", "Wyoming | \n", "1988 | \n", "67113 | \n", "106867 | \n", "0 | \n", "38.57512 | \n", "61.42488 | \n", "465080 | \n", "56 | \n", "WY | \n", "both | \n", "
557 | \n", "Wyoming | \n", "1992 | \n", "68160 | \n", "79347 | \n", "0 | \n", "46.20798 | \n", "53.79202 | \n", "466251 | \n", "56 | \n", "WY | \n", "both | \n", "
558 | \n", "Wyoming | \n", "1996 | \n", "77934 | \n", "105388 | \n", "0 | \n", "42.51208 | \n", "57.48792 | \n", "488167 | \n", "56 | \n", "WY | \n", "both | \n", "
559 | \n", "Wyoming | \n", "2000 | \n", "60481 | \n", "147947 | \n", "0 | \n", "29.01769 | \n", "70.98231 | \n", "493782 | \n", "56 | \n", "WY | \n", "both | \n", "
560 | \n", "Wyoming | \n", "2004 | \n", "70776 | \n", "167629 | \n", "0 | \n", "29.68730 | \n", "70.31271 | \n", "506529 | \n", "56 | \n", "WY | \n", "both | \n", "
561 rows × 11 columns
\n", "\n", " | id | \n", "data1 | \n", "
---|---|---|
0 | \n", "A | \n", "150 | \n", "
1 | \n", "A | \n", "200 | \n", "
2 | \n", "B | \n", "50 | \n", "
3 | \n", "B | \n", "25 | \n", "
\n", " | id | \n", "data2 | \n", "
---|---|---|
0 | \n", "A | \n", "-20 | \n", "
1 | \n", "A | \n", "-75 | \n", "
2 | \n", "B | \n", "-125 | \n", "
3 | \n", "B | \n", "-250 | \n", "
\n", " | id | \n", "data1 | \n", "data2 | \n", "
---|---|---|---|
0 | \n", "A | \n", "150 | \n", "-20 | \n", "
1 | \n", "A | \n", "150 | \n", "-75 | \n", "
2 | \n", "A | \n", "200 | \n", "-20 | \n", "
3 | \n", "A | \n", "200 | \n", "-75 | \n", "
4 | \n", "B | \n", "50 | \n", "-125 | \n", "
5 | \n", "B | \n", "50 | \n", "-250 | \n", "
6 | \n", "B | \n", "25 | \n", "-125 | \n", "
7 | \n", "B | \n", "25 | \n", "-250 | \n", "
\n", " | State | \n", "year | \n", "demvote | \n", "repvote | \n", "wallacevote | \n", "dempercent | \n", "reppercent | \n", "population | \n", "fips | \n", "stcode | \n", "matched | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "1964 | \n", "210732 | \n", "479085 | \n", "0 | \n", "30.54897 | \n", "69.45103 | \n", "1919000 | \n", "1 | \n", "AL | \n", "both | \n", "
1 | \n", "Alabama | \n", "1968 | \n", "196579 | \n", "146923 | \n", "691425 | \n", "18.99448 | \n", "81.00552 | \n", "1993000 | \n", "1 | \n", "AL | \n", "both | \n", "
2 | \n", "Alabama | \n", "1972 | \n", "256923 | \n", "728701 | \n", "0 | \n", "26.06704 | \n", "73.93296 | \n", "3540080 | \n", "1 | \n", "AL | \n", "both | \n", "
3 | \n", "Alabama | \n", "1976 | \n", "659170 | \n", "504070 | \n", "0 | \n", "56.66673 | \n", "43.33327 | \n", "3737204 | \n", "1 | \n", "AL | \n", "both | \n", "
4 | \n", "Alabama | \n", "1980 | \n", "636730 | \n", "654192 | \n", "0 | \n", "49.32366 | \n", "50.67634 | \n", "3894025 | \n", "1 | \n", "AL | \n", "both | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
556 | \n", "Wyoming | \n", "1988 | \n", "67113 | \n", "106867 | \n", "0 | \n", "38.57512 | \n", "61.42488 | \n", "465080 | \n", "56 | \n", "WY | \n", "both | \n", "
557 | \n", "Wyoming | \n", "1992 | \n", "68160 | \n", "79347 | \n", "0 | \n", "46.20798 | \n", "53.79202 | \n", "466251 | \n", "56 | \n", "WY | \n", "both | \n", "
558 | \n", "Wyoming | \n", "1996 | \n", "77934 | \n", "105388 | \n", "0 | \n", "42.51208 | \n", "57.48792 | \n", "488167 | \n", "56 | \n", "WY | \n", "both | \n", "
559 | \n", "Wyoming | \n", "2000 | \n", "60481 | \n", "147947 | \n", "0 | \n", "29.01769 | \n", "70.98231 | \n", "493782 | \n", "56 | \n", "WY | \n", "both | \n", "
560 | \n", "Wyoming | \n", "2004 | \n", "70776 | \n", "167629 | \n", "0 | \n", "29.68730 | \n", "70.31271 | \n", "506529 | \n", "56 | \n", "WY | \n", "both | \n", "
561 rows × 11 columns
\n", "\n", " | State | \n", "year | \n", "demvote | \n", "repvote | \n", "wallacevote | \n", "dempercent | \n", "reppercent | \n", "population | \n", "fips | \n", "stcode | \n", "matched | \n", "
---|
\n", " | State | \n", "year | \n", "demvote | \n", "repvote | \n", "wallacevote | \n", "dempercent | \n", "reppercent | \n", "population | \n", "fips | \n", "stcode | \n", "... | \n", "wom_meanincome | \n", "wom_minincome | \n", "wom_maxincome | \n", "wom_sdincome | \n", "wom_ineqincome | \n", "wom_gini_income | \n", "wom_n_income | \n", "wom_nwgt_income | \n", "medincome | \n", "matched | \n", "
---|
0 rows × 64 columns
\n", "\n", " | State | \n", "year | \n", "demvote | \n", "repvote | \n", "wallacevote | \n", "dempercent | \n", "reppercent | \n", "population | \n", "fips | \n", "stcode | \n", "... | \n", "wom_meanincome | \n", "wom_minincome | \n", "wom_maxincome | \n", "wom_sdincome | \n", "wom_ineqincome | \n", "wom_gini_income | \n", "wom_n_income | \n", "wom_nwgt_income | \n", "medincome | \n", "matched | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "1964 | \n", "210732 | \n", "479085 | \n", "0 | \n", "30.54897 | \n", "69.45103 | \n", "1919000 | \n", "1 | \n", "AL | \n", "... | \n", "11400.0 | \n", "58.139530 | \n", "72674.42 | \n", "1796.89 | \n", "29.53152 | \n", "0.473738 | \n", "175.0 | \n", "418494.1 | \n", "76.68081 | \n", "both | \n", "
1 | \n", "Alabama | \n", "1968 | \n", "196579 | \n", "146923 | \n", "691425 | \n", "18.99448 | \n", "81.00552 | \n", "1993000 | \n", "1 | \n", "AL | \n", "... | \n", "12005.3 | \n", "NaN | \n", "NaN | \n", "1968.78 | \n", "27.40979 | \n", "0.485090 | \n", "NaN | \n", "NaN | \n", "80.72643 | \n", "both | \n", "
2 | \n", "Alabama | \n", "1972 | \n", "256923 | \n", "728701 | \n", "0 | \n", "26.06704 | \n", "73.93296 | \n", "3540080 | \n", "1 | \n", "AL | \n", "... | \n", "14667.9 | \n", "NaN | \n", "NaN | \n", "8604.25 | \n", "17.83577 | \n", "0.457932 | \n", "NaN | \n", "NaN | \n", "82.27975 | \n", "both | \n", "
3 | \n", "Alabama | \n", "1976 | \n", "659170 | \n", "504070 | \n", "0 | \n", "56.66673 | \n", "43.33327 | \n", "3737204 | \n", "1 | \n", "AL | \n", "... | \n", "15362.5 | \n", "NaN | \n", "NaN | \n", "12842.20 | \n", "15.77765 | \n", "0.454074 | \n", "NaN | \n", "NaN | \n", "60.07215 | \n", "both | \n", "
4 | \n", "Alabama | \n", "1980 | \n", "636730 | \n", "654192 | \n", "0 | \n", "49.32366 | \n", "50.67634 | \n", "3894025 | \n", "1 | \n", "AL | \n", "... | \n", "14804.2 | \n", "28.384280 | \n", "120196.50 | \n", "5944.71 | \n", "14.52640 | \n", "0.436961 | \n", "543.0 | \n", "711278.2 | \n", "41.72882 | \n", "both | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
556 | \n", "Wyoming | \n", "1988 | \n", "67113 | \n", "106867 | \n", "0 | \n", "38.57512 | \n", "61.42488 | \n", "465080 | \n", "56 | \n", "WY | \n", "... | \n", "17188.0 | \n", "75.987840 | \n", "77507.60 | \n", "10402.40 | \n", "23.54822 | \n", "0.478940 | \n", "318.0 | \n", "110956.1 | \n", "36.63389 | \n", "both | \n", "
557 | \n", "Wyoming | \n", "1992 | \n", "68160 | \n", "79347 | \n", "0 | \n", "46.20798 | \n", "53.79202 | \n", "466251 | \n", "56 | \n", "WY | \n", "... | \n", "17934.1 | \n", "92.307700 | \n", "96391.03 | \n", "12512.80 | \n", "21.14388 | \n", "0.469024 | \n", "360.0 | \n", "117688.6 | \n", "30.10564 | \n", "both | \n", "
558 | \n", "Wyoming | \n", "1996 | \n", "77934 | \n", "105388 | \n", "0 | \n", "42.51208 | \n", "57.48792 | \n", "488167 | \n", "56 | \n", "WY | \n", "... | \n", "18796.4 | \n", "29.816510 | \n", "122420.90 | \n", "14517.60 | \n", "22.74368 | \n", "0.461693 | \n", "413.0 | \n", "125222.3 | \n", "26.93395 | \n", "both | \n", "
559 | \n", "Wyoming | \n", "2000 | \n", "60481 | \n", "147947 | \n", "0 | \n", "29.01769 | \n", "70.98231 | \n", "493782 | \n", "56 | \n", "WY | \n", "... | \n", "20463.4 | \n", "88.819230 | \n", "333171.40 | \n", "16609.80 | \n", "15.30497 | \n", "0.447124 | \n", "440.0 | \n", "128753.9 | \n", "26.05026 | \n", "both | \n", "
560 | \n", "Wyoming | \n", "2004 | \n", "70776 | \n", "167629 | \n", "0 | \n", "29.68730 | \n", "70.31271 | \n", "506529 | \n", "56 | \n", "WY | \n", "... | \n", "20225.1 | \n", "9.587728 | \n", "206166.80 | \n", "18311.90 | \n", "11.33138 | \n", "0.432011 | \n", "692.0 | \n", "123164.1 | \n", "24.74094 | \n", "both | \n", "
561 rows × 64 columns
\n", "\n", " | State | \n", "year | \n", "demvote | \n", "repvote | \n", "wallacevote | \n", "dempercent | \n", "reppercent | \n", "population | \n", "fips | \n", "stcode | \n", "... | \n", "Manufacturing_share | \n", "Finance_Insurance_share | \n", "Legal_share | \n", "Education_share | \n", "Health_share | \n", "Government_share | \n", "Government_federal_share | \n", "Government_military_share | \n", "Government_statelocal_share | \n", "matched | \n", "
---|
0 rows × 98 columns
\n", "\n", " | State | \n", "year | \n", "demvote | \n", "repvote | \n", "wallacevote | \n", "dempercent | \n", "reppercent | \n", "population | \n", "fips | \n", "stcode | \n", "... | \n", "Manufacturing_share | \n", "Finance_Insurance_share | \n", "Legal_share | \n", "Education_share | \n", "Health_share | \n", "Government_share | \n", "Government_federal_share | \n", "Government_military_share | \n", "Government_statelocal_share | \n", "matched | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "1964 | \n", "210732 | \n", "479085 | \n", "0 | \n", "30.54897 | \n", "69.45103 | \n", "1919000 | \n", "1 | \n", "AL | \n", "... | \n", "28.228270 | \n", "11.413240 | \n", "0.402390 | \n", "0.256066 | \n", "1.902207 | \n", "15.86392 | \n", "6.291915 | \n", "2.402146 | \n", "7.182051 | \n", "both | \n", "
1 | \n", "Alabama | \n", "1968 | \n", "196579 | \n", "146923 | \n", "691425 | \n", "18.99448 | \n", "81.00552 | \n", "1993000 | \n", "1 | \n", "AL | \n", "... | \n", "28.742350 | \n", "10.676770 | \n", "0.429263 | \n", "0.365330 | \n", "2.228514 | \n", "16.93305 | \n", "5.945748 | \n", "2.630377 | \n", "8.356928 | \n", "both | \n", "
2 | \n", "Alabama | \n", "1972 | \n", "256923 | \n", "728701 | \n", "0 | \n", "26.06704 | \n", "73.93296 | \n", "3540080 | \n", "1 | \n", "AL | \n", "... | \n", "26.056340 | \n", "11.482790 | \n", "0.469484 | \n", "0.443401 | \n", "2.595201 | \n", "17.21440 | \n", "5.692488 | \n", "2.679969 | \n", "8.841941 | \n", "both | \n", "
3 | \n", "Alabama | \n", "1976 | \n", "659170 | \n", "504070 | \n", "0 | \n", "56.66673 | \n", "43.33327 | \n", "3737204 | \n", "1 | \n", "AL | \n", "... | \n", "24.853340 | \n", "11.505410 | \n", "0.479220 | \n", "0.359415 | \n", "2.986863 | \n", "17.42543 | \n", "5.787821 | \n", "2.255639 | \n", "9.386103 | \n", "both | \n", "
4 | \n", "Alabama | \n", "1980 | \n", "636730 | \n", "654192 | \n", "0 | \n", "49.32366 | \n", "50.67634 | \n", "3894025 | \n", "1 | \n", "AL | \n", "... | \n", "24.604230 | \n", "11.634170 | \n", "0.649892 | \n", "0.352719 | \n", "3.660501 | \n", "17.88313 | \n", "5.782370 | \n", "2.171860 | \n", "9.928901 | \n", "both | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
556 | \n", "Wyoming | \n", "1988 | \n", "67113 | \n", "106867 | \n", "0 | \n", "38.57512 | \n", "61.42488 | \n", "465080 | \n", "56 | \n", "WY | \n", "... | \n", "4.380078 | \n", "7.788767 | \n", "0.688802 | \n", "0.123631 | \n", "2.207700 | \n", "14.51784 | \n", "2.622748 | \n", "1.660191 | \n", "10.234900 | \n", "both | \n", "
557 | \n", "Wyoming | \n", "1992 | \n", "68160 | \n", "79347 | \n", "0 | \n", "46.20798 | \n", "53.79202 | \n", "466251 | \n", "56 | \n", "WY | \n", "... | \n", "4.303816 | \n", "7.670391 | \n", "0.704806 | \n", "0.179951 | \n", "2.579291 | \n", "14.99588 | \n", "2.811727 | \n", "1.552073 | \n", "10.632080 | \n", "both | \n", "
558 | \n", "Wyoming | \n", "1996 | \n", "77934 | \n", "105388 | \n", "0 | \n", "42.51208 | \n", "57.48792 | \n", "488167 | \n", "56 | \n", "WY | \n", "... | \n", "6.146708 | \n", "9.280448 | \n", "0.705568 | \n", "0.152555 | \n", "2.866768 | \n", "14.23849 | \n", "2.657005 | \n", "1.544622 | \n", "10.030510 | \n", "both | \n", "
559 | \n", "Wyoming | \n", "2000 | \n", "60481 | \n", "147947 | \n", "0 | \n", "29.01769 | \n", "70.98231 | \n", "493782 | \n", "56 | \n", "WY | \n", "... | \n", "6.012348 | \n", "3.110034 | \n", "0.646241 | \n", "0.173100 | \n", "4.269805 | \n", "14.95586 | \n", "2.729213 | \n", "1.540592 | \n", "10.686050 | \n", "both | \n", "
560 | \n", "Wyoming | \n", "2004 | \n", "70776 | \n", "167629 | \n", "0 | \n", "29.68730 | \n", "70.31271 | \n", "506529 | \n", "56 | \n", "WY | \n", "... | \n", "3.795901 | \n", "2.813834 | \n", "0.589240 | \n", "0.222032 | \n", "4.419300 | \n", "14.49616 | \n", "2.519214 | \n", "1.648164 | \n", "10.328780 | \n", "both | \n", "
561 rows × 98 columns
\n", "\n", " | State | \n", "state | \n", "year | \n", "matched | \n", "
---|---|---|---|---|
77 | \n", "D. C. | \n", "NaN | \n", "1964.0 | \n", "left_only | \n", "
78 | \n", "D. C. | \n", "NaN | \n", "1968.0 | \n", "left_only | \n", "
79 | \n", "D. C. | \n", "NaN | \n", "1972.0 | \n", "left_only | \n", "
80 | \n", "D. C. | \n", "NaN | \n", "1976.0 | \n", "left_only | \n", "
81 | \n", "D. C. | \n", "NaN | \n", "1980.0 | \n", "left_only | \n", "
82 | \n", "D. C. | \n", "NaN | \n", "1984.0 | \n", "left_only | \n", "
83 | \n", "D. C. | \n", "NaN | \n", "1988.0 | \n", "left_only | \n", "
84 | \n", "D. C. | \n", "NaN | \n", "1992.0 | \n", "left_only | \n", "
85 | \n", "D. C. | \n", "NaN | \n", "1996.0 | \n", "left_only | \n", "
86 | \n", "D. C. | \n", "NaN | \n", "2000.0 | \n", "left_only | \n", "
87 | \n", "D. C. | \n", "NaN | \n", "2004.0 | \n", "left_only | \n", "
561 | \n", "NaN | \n", "District of Columbia | \n", "NaN | \n", "right_only | \n", "
562 | \n", "NaN | \n", "Puerto Rico | \n", "NaN | \n", "right_only | \n", "
563 | \n", "NaN | \n", "Northern Mariana Islands | \n", "NaN | \n", "right_only | \n", "
564 | \n", "NaN | \n", "United States Virgin Islands | \n", "NaN | \n", "right_only | \n", "
565 | \n", "NaN | \n", "American Samoa | \n", "NaN | \n", "right_only | \n", "
566 | \n", "NaN | \n", "Guam | \n", "NaN | \n", "right_only | \n", "
567 | \n", "NaN | \n", "United States Minor Outlying Islands | \n", "NaN | \n", "right_only | \n", "
\n", " | State | \n", "state | \n", "year | \n", "matched | \n", "
---|---|---|---|---|
561 | \n", "NaN | \n", "Puerto Rico | \n", "NaN | \n", "right_only | \n", "
562 | \n", "NaN | \n", "Northern Mariana Islands | \n", "NaN | \n", "right_only | \n", "
563 | \n", "NaN | \n", "United States Virgin Islands | \n", "NaN | \n", "right_only | \n", "
564 | \n", "NaN | \n", "American Samoa | \n", "NaN | \n", "right_only | \n", "
565 | \n", "NaN | \n", "Guam | \n", "NaN | \n", "right_only | \n", "
566 | \n", "NaN | \n", "United States Minor Outlying Islands | \n", "NaN | \n", "right_only | \n", "
\n", " | State | \n", "year | \n", "demvote | \n", "repvote | \n", "wallacevote | \n", "dempercent | \n", "reppercent | \n", "population | \n", "fips | \n", "stcode | \n", "... | \n", "Government_military_share | \n", "Government_statelocal_share | \n", "state | \n", "area_sqmi | \n", "area_sqkm | \n", "landarea_sqmi | \n", "landarea_sqkm | \n", "water_sqmi | \n", "water_sqkm | \n", "percent_water | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "1964.0 | \n", "210732.0 | \n", "479085.0 | \n", "0.0 | \n", "30.54897 | \n", "69.45103 | \n", "1919000.0 | \n", "1.0 | \n", "AL | \n", "... | \n", "2.402146 | \n", "7.182051 | \n", "Alabama | \n", "52,419.02 | \n", "135,765 | \n", "50,744.00 | \n", "131,426 | \n", "1,675.01 | \n", "4,338 | \n", "3.20 | \n", "
1 | \n", "Alabama | \n", "1968.0 | \n", "196579.0 | \n", "146923.0 | \n", "691425.0 | \n", "18.99448 | \n", "81.00552 | \n", "1993000.0 | \n", "1.0 | \n", "AL | \n", "... | \n", "2.630377 | \n", "8.356928 | \n", "Alabama | \n", "52,419.02 | \n", "135,765 | \n", "50,744.00 | \n", "131,426 | \n", "1,675.01 | \n", "4,338 | \n", "3.20 | \n", "
2 | \n", "Alabama | \n", "1972.0 | \n", "256923.0 | \n", "728701.0 | \n", "0.0 | \n", "26.06704 | \n", "73.93296 | \n", "3540080.0 | \n", "1.0 | \n", "AL | \n", "... | \n", "2.679969 | \n", "8.841941 | \n", "Alabama | \n", "52,419.02 | \n", "135,765 | \n", "50,744.00 | \n", "131,426 | \n", "1,675.01 | \n", "4,338 | \n", "3.20 | \n", "
3 | \n", "Alabama | \n", "1976.0 | \n", "659170.0 | \n", "504070.0 | \n", "0.0 | \n", "56.66673 | \n", "43.33327 | \n", "3737204.0 | \n", "1.0 | \n", "AL | \n", "... | \n", "2.255639 | \n", "9.386103 | \n", "Alabama | \n", "52,419.02 | \n", "135,765 | \n", "50,744.00 | \n", "131,426 | \n", "1,675.01 | \n", "4,338 | \n", "3.20 | \n", "
4 | \n", "Alabama | \n", "1980.0 | \n", "636730.0 | \n", "654192.0 | \n", "0.0 | \n", "49.32366 | \n", "50.67634 | \n", "3894025.0 | \n", "1.0 | \n", "AL | \n", "... | \n", "2.171860 | \n", "9.928901 | \n", "Alabama | \n", "52,419.02 | \n", "135,765 | \n", "50,744.00 | \n", "131,426 | \n", "1,675.01 | \n", "4,338 | \n", "3.20 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
556 | \n", "Wyoming | \n", "1988.0 | \n", "67113.0 | \n", "106867.0 | \n", "0.0 | \n", "38.57512 | \n", "61.42488 | \n", "465080.0 | \n", "56.0 | \n", "WY | \n", "... | \n", "1.660191 | \n", "10.234900 | \n", "Wyoming | \n", "97,813.56 | \n", "253,336 | \n", "97,100.40 | \n", "251,489 | \n", "713.16 | \n", "1,847 | \n", "0.73 | \n", "
557 | \n", "Wyoming | \n", "1992.0 | \n", "68160.0 | \n", "79347.0 | \n", "0.0 | \n", "46.20798 | \n", "53.79202 | \n", "466251.0 | \n", "56.0 | \n", "WY | \n", "... | \n", "1.552073 | \n", "10.632080 | \n", "Wyoming | \n", "97,813.56 | \n", "253,336 | \n", "97,100.40 | \n", "251,489 | \n", "713.16 | \n", "1,847 | \n", "0.73 | \n", "
558 | \n", "Wyoming | \n", "1996.0 | \n", "77934.0 | \n", "105388.0 | \n", "0.0 | \n", "42.51208 | \n", "57.48792 | \n", "488167.0 | \n", "56.0 | \n", "WY | \n", "... | \n", "1.544622 | \n", "10.030510 | \n", "Wyoming | \n", "97,813.56 | \n", "253,336 | \n", "97,100.40 | \n", "251,489 | \n", "713.16 | \n", "1,847 | \n", "0.73 | \n", "
559 | \n", "Wyoming | \n", "2000.0 | \n", "60481.0 | \n", "147947.0 | \n", "0.0 | \n", "29.01769 | \n", "70.98231 | \n", "493782.0 | \n", "56.0 | \n", "WY | \n", "... | \n", "1.540592 | \n", "10.686050 | \n", "Wyoming | \n", "97,813.56 | \n", "253,336 | \n", "97,100.40 | \n", "251,489 | \n", "713.16 | \n", "1,847 | \n", "0.73 | \n", "
560 | \n", "Wyoming | \n", "2004.0 | \n", "70776.0 | \n", "167629.0 | \n", "0.0 | \n", "29.68730 | \n", "70.31271 | \n", "506529.0 | \n", "56.0 | \n", "WY | \n", "... | \n", "1.648164 | \n", "10.328780 | \n", "Wyoming | \n", "97,813.56 | \n", "253,336 | \n", "97,100.40 | \n", "251,489 | \n", "713.16 | \n", "1,847 | \n", "0.73 | \n", "
561 rows × 105 columns
\n", "\n", " | GeoFIPS | \n", "GeoName | \n", "Region | \n", "ComponentId | \n", "ComponentName | \n", "IndustryId | \n", "IndustryClassification | \n", "Description | \n", "1997 | \n", "1998 | \n", "... | \n", "2006 | \n", "2007 | \n", "2008 | \n", "2009 | \n", "2010 | \n", "2011 | \n", "2012 | \n", "2013 | \n", "2014 | \n", "2015 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "00000 | \n", "United States | \n", "NaN | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "1 | \n", "... | \n", "All industry total | \n", "8542530 | \n", "9024434 | \n", "... | \n", "13773226 | \n", "14391149 | \n", "14626598 | \n", "14320114 | \n", "14859772 | \n", "15406002 | \n", "16041243 | \n", "16576808 | \n", "17277548 | \n", "17919651 | \n", "
1 | \n", "00000 | \n", "United States | \n", "NaN | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "2 | \n", "... | \n", "Private industries | \n", "7459395 | \n", "7894015 | \n", "... | \n", "12045446 | \n", "12572387 | \n", "12716179 | \n", "12352979 | \n", "12826507 | \n", "13348439 | \n", "13957545 | \n", "14468465 | \n", "15115846 | \n", "15698669 | \n", "
2 | \n", "00000 | \n", "United States | \n", "NaN | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "3 | \n", "11 | \n", "Agriculture, forestry, fishing, and hunting | \n", "108796 | \n", "99940 | \n", "... | \n", "128345 | \n", "141999 | \n", "154525 | \n", "137655 | \n", "160217 | \n", "197241 | \n", "185800 | \n", "221821 | \n", "203188 | \n", "175236 | \n", "
3 | \n", "00000 | \n", "United States | \n", "NaN | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "4 | \n", "111-112 | \n", "Farms | \n", "88136 | \n", "79030 | \n", "... | \n", "99352 | \n", "113533 | \n", "126345 | \n", "109800 | \n", "129725 | \n", "166249 | \n", "151489 | \n", "186960 | \n", "166249 | \n", "(NA) | \n", "
4 | \n", "00000 | \n", "United States | \n", "NaN | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "5 | \n", "113-115 | \n", "Forestry, fishing, and related activities | \n", "20660 | \n", "20910 | \n", "... | \n", "28993 | \n", "28466 | \n", "28180 | \n", "27855 | \n", "30492 | \n", "30992 | \n", "34311 | \n", "34861 | \n", "36939 | \n", "(NA) | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
43287 | \n", "94000 | \n", "Plains | \n", "4 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "39071 | \n", "39970 | \n", "... | \n", "46013 | \n", "46501 | \n", "46794 | \n", "45399 | \n", "46210 | \n", "46921 | \n", "47629 | \n", "48126 | \n", "48778 | \n", "49153 | \n", "
43288 | \n", "95000 | \n", "Southeast | \n", "5 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "36722 | \n", "37896 | \n", "... | \n", "43586 | \n", "43028 | \n", "42092 | \n", "40346 | \n", "40675 | \n", "40471 | \n", "40415 | \n", "40487 | \n", "40802 | \n", "41352 | \n", "
43289 | \n", "96000 | \n", "Southwest | \n", "6 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "38887 | \n", "40283 | \n", "... | \n", "45743 | \n", "46684 | \n", "45914 | \n", "44324 | \n", "44491 | \n", "45344 | \n", "46881 | \n", "48064 | \n", "49327 | \n", "50519 | \n", "
43290 | \n", "97000 | \n", "Rocky Mountain | \n", "7 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "38243 | \n", "40390 | \n", "... | \n", "46756 | \n", "47587 | \n", "47019 | \n", "45170 | \n", "44937 | \n", "45060 | \n", "45014 | \n", "45564 | \n", "46508 | \n", "47093 | \n", "
43291 | \n", "98000 | \n", "Far West | \n", "8 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "41901 | \n", "43467 | \n", "... | \n", "53932 | \n", "54469 | \n", "53881 | \n", "51328 | \n", "51609 | \n", "51857 | \n", "52429 | \n", "52942 | \n", "54077 | \n", "55429 | \n", "
43292 rows × 27 columns
\n", "\n", " | GeoFIPS | \n", "GeoName | \n", "Region | \n", "ComponentId | \n", "ComponentName | \n", "IndustryId | \n", "IndustryClassification | \n", "Description | \n", "1997 | \n", "1998 | \n", "... | \n", "2006 | \n", "2007 | \n", "2008 | \n", "2009 | \n", "2010 | \n", "2011 | \n", "2012 | \n", "2013 | \n", "2014 | \n", "2015 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "00000 | \n", "United States | \n", "NaN | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "1 | \n", "... | \n", "All industry total | \n", "8542530 | \n", "9024434 | \n", "... | \n", "13773226 | \n", "14391149 | \n", "14626598 | \n", "14320114 | \n", "14859772 | \n", "15406002 | \n", "16041243 | \n", "16576808 | \n", "17277548 | \n", "17919651 | \n", "
1 | \n", "00000 | \n", "United States | \n", "NaN | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "2 | \n", "... | \n", "Private industries | \n", "7459395 | \n", "7894015 | \n", "... | \n", "12045446 | \n", "12572387 | \n", "12716179 | \n", "12352979 | \n", "12826507 | \n", "13348439 | \n", "13957545 | \n", "14468465 | \n", "15115846 | \n", "15698669 | \n", "
90 | \n", "01000 | \n", "Alabama | \n", "5 | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "1 | \n", "... | \n", "All industry total | \n", "104218 | \n", "109414 | \n", "... | \n", "164468 | \n", "169923 | \n", "172646 | \n", "168315 | \n", "174710 | \n", "180665 | \n", "185878 | \n", "190095 | \n", "194421 | \n", "199656 | \n", "
91 | \n", "01000 | \n", "Alabama | \n", "5 | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "2 | \n", "... | \n", "Private industries | \n", "87014 | \n", "91506 | \n", "... | \n", "137954 | \n", "141306 | \n", "142965 | \n", "137143 | \n", "142773 | \n", "148181 | \n", "153494 | \n", "157961 | \n", "161364 | \n", "166243 | \n", "
180 | \n", "02000 | \n", "Alaska | \n", "8 | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "1 | \n", "... | \n", "All industry total | \n", "25446 | \n", "24030 | \n", "... | \n", "44679 | \n", "49197 | \n", "55461 | \n", "50463 | \n", "54134 | \n", "58759 | \n", "60890 | \n", "59762 | \n", "58253 | \n", "52747 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
43287 | \n", "94000 | \n", "Plains | \n", "4 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "39071 | \n", "39970 | \n", "... | \n", "46013 | \n", "46501 | \n", "46794 | \n", "45399 | \n", "46210 | \n", "46921 | \n", "47629 | \n", "48126 | \n", "48778 | \n", "49153 | \n", "
43288 | \n", "95000 | \n", "Southeast | \n", "5 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "36722 | \n", "37896 | \n", "... | \n", "43586 | \n", "43028 | \n", "42092 | \n", "40346 | \n", "40675 | \n", "40471 | \n", "40415 | \n", "40487 | \n", "40802 | \n", "41352 | \n", "
43289 | \n", "96000 | \n", "Southwest | \n", "6 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "38887 | \n", "40283 | \n", "... | \n", "45743 | \n", "46684 | \n", "45914 | \n", "44324 | \n", "44491 | \n", "45344 | \n", "46881 | \n", "48064 | \n", "49327 | \n", "50519 | \n", "
43290 | \n", "97000 | \n", "Rocky Mountain | \n", "7 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "38243 | \n", "40390 | \n", "... | \n", "46756 | \n", "47587 | \n", "47019 | \n", "45170 | \n", "44937 | \n", "45060 | \n", "45014 | \n", "45564 | \n", "46508 | \n", "47093 | \n", "
43291 | \n", "98000 | \n", "Far West | \n", "8 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "41901 | \n", "43467 | \n", "... | \n", "53932 | \n", "54469 | \n", "53881 | \n", "51328 | \n", "51609 | \n", "51857 | \n", "52429 | \n", "52942 | \n", "54077 | \n", "55429 | \n", "
180 rows × 27 columns
\n", "\n", " | GeoFIPS | \n", "GeoName | \n", "Region | \n", "ComponentId | \n", "ComponentName | \n", "IndustryId | \n", "IndustryClassification | \n", "Description | \n", "1997 | \n", "1998 | \n", "... | \n", "2006 | \n", "2007 | \n", "2008 | \n", "2009 | \n", "2010 | \n", "2011 | \n", "2012 | \n", "2013 | \n", "2014 | \n", "2015 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
90 | \n", "01000 | \n", "Alabama | \n", "5 | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "1 | \n", "... | \n", "All industry total | \n", "104218 | \n", "109414 | \n", "... | \n", "164468 | \n", "169923 | \n", "172646 | \n", "168315 | \n", "174710 | \n", "180665 | \n", "185878 | \n", "190095 | \n", "194421 | \n", "199656 | \n", "
91 | \n", "01000 | \n", "Alabama | \n", "5 | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "2 | \n", "... | \n", "Private industries | \n", "87014 | \n", "91506 | \n", "... | \n", "137954 | \n", "141306 | \n", "142965 | \n", "137143 | \n", "142773 | \n", "148181 | \n", "153494 | \n", "157961 | \n", "161364 | \n", "166243 | \n", "
180 | \n", "02000 | \n", "Alaska | \n", "8 | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "1 | \n", "... | \n", "All industry total | \n", "25446 | \n", "24030 | \n", "... | \n", "44679 | \n", "49197 | \n", "55461 | \n", "50463 | \n", "54134 | \n", "58759 | \n", "60890 | \n", "59762 | \n", "58253 | \n", "52747 | \n", "
181 | \n", "02000 | \n", "Alaska | \n", "8 | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "2 | \n", "... | \n", "Private industries | \n", "20284 | \n", "18776 | \n", "... | \n", "36737 | \n", "40919 | \n", "46889 | \n", "41387 | \n", "44742 | \n", "48851 | \n", "50592 | \n", "49764 | \n", "47879 | \n", "42246 | \n", "
270 | \n", "04000 | \n", "Arizona | \n", "6 | \n", "200 | \n", "Gross domestic product (GDP) by state | \n", "1 | \n", "... | \n", "All industry total | \n", "132708 | \n", "143768 | \n", "... | \n", "248459 | \n", "262045 | \n", "256718 | \n", "242509 | \n", "245668 | \n", "254192 | \n", "264693 | \n", "270642 | \n", "280166 | \n", "290903 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
43279 | \n", "51000 | \n", "Virginia | \n", "5 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "43069 | \n", "44745 | \n", "... | \n", "52866 | \n", "52657 | \n", "51985 | \n", "51389 | \n", "51945 | \n", "51749 | \n", "51538 | \n", "51105 | \n", "50861 | \n", "51540 | \n", "
43280 | \n", "53000 | \n", "Washington | \n", "8 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "45753 | \n", "47712 | \n", "... | \n", "52900 | \n", "55348 | \n", "54939 | \n", "52264 | \n", "52681 | \n", "52495 | \n", "53423 | \n", "53987 | \n", "54773 | \n", "55577 | \n", "
43281 | \n", "54000 | \n", "West Virginia | \n", "5 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "30445 | \n", "30978 | \n", "... | \n", "34009 | \n", "33892 | \n", "34679 | \n", "34564 | \n", "35368 | \n", "36085 | \n", "35515 | \n", "35778 | \n", "36234 | \n", "36817 | \n", "
43282 | \n", "55000 | \n", "Wisconsin | \n", "3 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "38663 | \n", "39695 | \n", "... | \n", "45515 | \n", "45464 | \n", "44622 | \n", "43215 | \n", "44126 | \n", "44905 | \n", "45380 | \n", "45582 | \n", "46469 | \n", "46893 | \n", "
43283 | \n", "56000 | \n", "Wyoming | \n", "7 | \n", "1000 | \n", "Per capita real GDP by state | \n", "1 | \n", "... | \n", "All industry total | \n", "46585 | \n", "47652 | \n", "... | \n", "63428 | \n", "65471 | \n", "69182 | \n", "66320 | \n", "64602 | \n", "63981 | \n", "60744 | \n", "60743 | \n", "61639 | \n", "61389 | \n", "
150 rows × 27 columns
\n", "\n", " | GeoName | \n", "GeoFIPS | \n", "Region | \n", "ComponentName | \n", "Description | \n", "variable | \n", "value | \n", "
---|---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "Gross domestic product (GDP) by state | \n", "All industry total | \n", "1997 | \n", "104218 | \n", "
1 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "Gross domestic product (GDP) by state | \n", "Private industries | \n", "1997 | \n", "87014 | \n", "
2 | \n", "Alaska | \n", "02000 | \n", "8 | \n", "Gross domestic product (GDP) by state | \n", "All industry total | \n", "1997 | \n", "25446 | \n", "
3 | \n", "Alaska | \n", "02000 | \n", "8 | \n", "Gross domestic product (GDP) by state | \n", "Private industries | \n", "1997 | \n", "20284 | \n", "
4 | \n", "Arizona | \n", "04000 | \n", "6 | \n", "Gross domestic product (GDP) by state | \n", "All industry total | \n", "1997 | \n", "132708 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
2695 | \n", "Virginia | \n", "51000 | \n", "5 | \n", "Per capita real GDP by state | \n", "All industry total | \n", "2014 | \n", "50861 | \n", "
2696 | \n", "Washington | \n", "53000 | \n", "8 | \n", "Per capita real GDP by state | \n", "All industry total | \n", "2014 | \n", "54773 | \n", "
2697 | \n", "West Virginia | \n", "54000 | \n", "5 | \n", "Per capita real GDP by state | \n", "All industry total | \n", "2014 | \n", "36234 | \n", "
2698 | \n", "Wisconsin | \n", "55000 | \n", "3 | \n", "Per capita real GDP by state | \n", "All industry total | \n", "2014 | \n", "46469 | \n", "
2699 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "Per capita real GDP by state | \n", "All industry total | \n", "2014 | \n", "61639 | \n", "
2700 rows × 7 columns
\n", "\n", " | State | \n", "FIPS | \n", "Region | \n", "ComponentName | \n", "Description | \n", "Year | \n", "value | \n", "
---|---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "Gross domestic product (GDP) by state | \n", "All industry total | \n", "1997 | \n", "104218 | \n", "
1 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "Gross domestic product (GDP) by state | \n", "Private industries | \n", "1997 | \n", "87014 | \n", "
2 | \n", "Alaska | \n", "02000 | \n", "8 | \n", "Gross domestic product (GDP) by state | \n", "All industry total | \n", "1997 | \n", "25446 | \n", "
3 | \n", "Alaska | \n", "02000 | \n", "8 | \n", "Gross domestic product (GDP) by state | \n", "Private industries | \n", "1997 | \n", "20284 | \n", "
4 | \n", "Arizona | \n", "04000 | \n", "6 | \n", "Gross domestic product (GDP) by state | \n", "All industry total | \n", "1997 | \n", "132708 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
2695 | \n", "Virginia | \n", "51000 | \n", "5 | \n", "Per capita real GDP by state | \n", "All industry total | \n", "2014 | \n", "50861 | \n", "
2696 | \n", "Washington | \n", "53000 | \n", "8 | \n", "Per capita real GDP by state | \n", "All industry total | \n", "2014 | \n", "54773 | \n", "
2697 | \n", "West Virginia | \n", "54000 | \n", "5 | \n", "Per capita real GDP by state | \n", "All industry total | \n", "2014 | \n", "36234 | \n", "
2698 | \n", "Wisconsin | \n", "55000 | \n", "3 | \n", "Per capita real GDP by state | \n", "All industry total | \n", "2014 | \n", "46469 | \n", "
2699 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "Per capita real GDP by state | \n", "All industry total | \n", "2014 | \n", "61639 | \n", "
2700 rows × 7 columns
\n", "\n", " | State | \n", "FIPS | \n", "Region | \n", "Year | \n", "value | \n", "feature | \n", "
---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "1997 | \n", "104218 | \n", "Gross domestic product (GDP) by stateAll indus... | \n", "
1 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "1997 | \n", "87014 | \n", "Gross domestic product (GDP) by statePrivate i... | \n", "
2 | \n", "Alaska | \n", "02000 | \n", "8 | \n", "1997 | \n", "25446 | \n", "Gross domestic product (GDP) by stateAll indus... | \n", "
3 | \n", "Alaska | \n", "02000 | \n", "8 | \n", "1997 | \n", "20284 | \n", "Gross domestic product (GDP) by statePrivate i... | \n", "
4 | \n", "Arizona | \n", "04000 | \n", "6 | \n", "1997 | \n", "132708 | \n", "Gross domestic product (GDP) by stateAll indus... | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
2695 | \n", "Virginia | \n", "51000 | \n", "5 | \n", "2014 | \n", "50861 | \n", "Per capita real GDP by stateAll industry total | \n", "
2696 | \n", "Washington | \n", "53000 | \n", "8 | \n", "2014 | \n", "54773 | \n", "Per capita real GDP by stateAll industry total | \n", "
2697 | \n", "West Virginia | \n", "54000 | \n", "5 | \n", "2014 | \n", "36234 | \n", "Per capita real GDP by stateAll industry total | \n", "
2698 | \n", "Wisconsin | \n", "55000 | \n", "3 | \n", "2014 | \n", "46469 | \n", "Per capita real GDP by stateAll industry total | \n", "
2699 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "2014 | \n", "61639 | \n", "Per capita real GDP by stateAll industry total | \n", "
2700 rows × 6 columns
\n", "\n", " | \n", " | \n", " | feature | \n", "Gross domestic product (GDP) by stateAll industry total | \n", "Gross domestic product (GDP) by statePrivate industries | \n", "Per capita real GDP by stateAll industry total | \n", "
---|---|---|---|---|---|---|
State | \n", "FIPS | \n", "Region | \n", "Year | \n", "\n", " | \n", " | \n", " |
Alabama | \n", "01000 | \n", "5 | \n", "1997 | \n", "104218 | \n", "87014 | \n", "31398 | \n", "
1998 | \n", "109414 | \n", "91506 | \n", "32164 | \n", "|||
1999 | \n", "115015 | \n", "96284 | \n", "33106 | \n", "|||
2000 | \n", "119020 | \n", "99665 | \n", "33284 | \n", "|||
2001 | \n", "122822 | \n", "102978 | \n", "33312 | \n", "|||
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
Wyoming | \n", "56000 | \n", "7 | \n", "2010 | \n", "39103 | \n", "33832 | \n", "64602 | \n", "
2011 | \n", "41499 | \n", "36164 | \n", "63981 | \n", "|||
2012 | \n", "40201 | \n", "34604 | \n", "60744 | \n", "|||
2013 | \n", "40979 | \n", "35096 | \n", "60743 | \n", "|||
2014 | \n", "42021 | \n", "35947 | \n", "61639 | \n", "
900 rows × 3 columns
\n", "\n", " | State | \n", "FIPS | \n", "Region | \n", "Year | \n", "Gross domestic product (GDP) by stateAll industry total | \n", "Gross domestic product (GDP) by statePrivate industries | \n", "Per capita real GDP by stateAll industry total | \n", "
---|---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "1997 | \n", "104218 | \n", "87014 | \n", "31398 | \n", "
1 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "1998 | \n", "109414 | \n", "91506 | \n", "32164 | \n", "
2 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "1999 | \n", "115015 | \n", "96284 | \n", "33106 | \n", "
3 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "2000 | \n", "119020 | \n", "99665 | \n", "33284 | \n", "
4 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "2001 | \n", "122822 | \n", "102978 | \n", "33312 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
895 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "2010 | \n", "39103 | \n", "33832 | \n", "64602 | \n", "
896 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "2011 | \n", "41499 | \n", "36164 | \n", "63981 | \n", "
897 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "2012 | \n", "40201 | \n", "34604 | \n", "60744 | \n", "
898 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "2013 | \n", "40979 | \n", "35096 | \n", "60743 | \n", "
899 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "2014 | \n", "42021 | \n", "35947 | \n", "61639 | \n", "
900 rows × 7 columns
\n", "\n", " | State | \n", "FIPS | \n", "Region | \n", "Year | \n", "GDP | \n", "GDPprivate | \n", "GDPpc | \n", "percent_private | \n", "
---|---|---|---|---|---|---|---|---|
0 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "1997 | \n", "104218 | \n", "87014 | \n", "31398 | \n", "83.492295 | \n", "
1 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "1998 | \n", "109414 | \n", "91506 | \n", "32164 | \n", "83.632808 | \n", "
2 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "1999 | \n", "115015 | \n", "96284 | \n", "33106 | \n", "83.714298 | \n", "
3 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "2000 | \n", "119020 | \n", "99665 | \n", "33284 | \n", "83.738027 | \n", "
4 | \n", "Alabama | \n", "01000 | \n", "5 | \n", "2001 | \n", "122822 | \n", "102978 | \n", "33312 | \n", "83.843285 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
895 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "2010 | \n", "39103 | \n", "33832 | \n", "64602 | \n", "86.520216 | \n", "
896 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "2011 | \n", "41499 | \n", "36164 | \n", "63981 | \n", "87.144269 | \n", "
897 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "2012 | \n", "40201 | \n", "34604 | \n", "60744 | \n", "86.077461 | \n", "
898 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "2013 | \n", "40979 | \n", "35096 | \n", "60743 | \n", "85.643866 | \n", "
899 | \n", "Wyoming | \n", "56000 | \n", "7 | \n", "2014 | \n", "42021 | \n", "35947 | \n", "61639 | \n", "85.545323 | \n", "
900 rows × 8 columns
\n", "\n", " | caseid | \n", "liveurban | \n", "vote16 | \n", "protest | \n", "vote | \n", "most_important_issue | \n", "confecon | \n", "ideology | \n", "partyID | \n", "universal_income | \n", "... | \n", "partisanship | \n", "ftbiden_level | \n", "age | \n", "age2 | \n", "ftbiden_float | \n", "ftbiden_cat | \n", "ftbiden_str | \n", "prefersbiden | \n", "worried_econ | \n", "favor_both | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "Suburb | \n", "Someone else | \n", "False | \n", "Joe Biden | \n", "Health Care | \n", "A little worried | \n", "Conservative | \n", "Democrat | \n", "Favor a moderate amount | \n", "... | \n", "5.0 | \n", "neutral | \n", "51 | \n", "2601 | \n", "52.0 | \n", "52.0 | \n", "52.0 | \n", "True | \n", "False | \n", "True | \n", "
1 | \n", "2 | \n", "Suburb | \n", "Donald Trump | \n", "False | \n", "Donald Trump | \n", "Working together | \n", "A little worried | \n", "Conservative | \n", "Republican | \n", "Oppose a moderate amount | \n", "... | \n", "0.0 | \n", "neutral | \n", "78 | \n", "6084 | \n", "41.0 | \n", "41.0 | \n", "41.0 | \n", "False | \n", "False | \n", "False | \n", "
2 | \n", "3 | \n", "Rural | \n", "Hillary Clinton | \n", "False | \n", "Joe Biden | \n", "health care | \n", "Extremely worried | \n", "Moderate | \n", "Democrat | \n", "Neither favor nor oppose | \n", "... | \n", "88.0 | \n", "like | \n", "66 | \n", "4356 | \n", "88.0 | \n", "88.0 | \n", "88.0 | \n", "True | \n", "True | \n", "False | \n", "
3 | \n", "4 | \n", "City | \n", "Hillary Clinton | \n", "False | \n", "Donald Trump | \n", "The economy. | \n", "A little worried | \n", "Moderate | \n", "Democrat | \n", "Neither favor nor oppose | \n", "... | \n", "-100.0 | \n", "dislike | \n", "41 | \n", "1681 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "False | \n", "False | \n", "False | \n", "
4 | \n", "5 | \n", "City | \n", "Donald Trump | \n", "False | \n", "Donald Trump | \n", "China | \n", "Not at all worried | \n", "Conservative | \n", "Republican | \n", "Oppose a great deal | \n", "... | \n", "-69.0 | \n", "dislike | \n", "80 | \n", "6400 | \n", "25.0 | \n", "25.0 | \n", "25.0 | \n", "False | \n", "False | \n", "False | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
3160 | \n", "3161 | \n", "Town | \n", "Donald Trump | \n", "False | \n", "Donald Trump | \n", "The infiltration of Marxists into the institut... | \n", "A little worried | \n", "Conservative | \n", "Republican | \n", "Oppose a great deal | \n", "... | \n", "-74.0 | \n", "dislike | \n", "72 | \n", "5184 | \n", "7.0 | \n", "7.0 | \n", "7.0 | \n", "False | \n", "False | \n", "False | \n", "
3161 | \n", "3162 | \n", "City | \n", "Someone else | \n", "False | \n", "Someone else | \n", "Lack of basic resources being provided and off... | \n", "Extremely worried | \n", "NaN | \n", "Democrat | \n", "Favor a great deal | \n", "... | \n", "-10.0 | \n", "dislike | \n", "24 | \n", "576 | \n", "25.0 | \n", "25.0 | \n", "25.0 | \n", "False | \n", "True | \n", "True | \n", "
3162 | \n", "3163 | \n", "City | \n", "Did not vote | \n", "False | \n", "Probably will not vote | \n", "donald trump | \n", "Very worried | \n", "Liberal | \n", "Independent | \n", "Oppose a great deal | \n", "... | \n", "44.0 | \n", "neutral | \n", "40 | \n", "1600 | \n", "50.0 | \n", "50.0 | \n", "50.0 | \n", "True | \n", "False | \n", "False | \n", "
3163 | \n", "3164 | \n", "Suburb | \n", "Did not vote | \n", "False | \n", "Joe Biden | \n", "Donald Trump | \n", "Moderately worried | \n", "Liberal | \n", "Democrat | \n", "Favor a moderate amount | \n", "... | \n", "94.0 | \n", "like | \n", "60 | \n", "3600 | \n", "95.0 | \n", "95.0 | \n", "95.0 | \n", "True | \n", "True | \n", "False | \n", "
3164 | \n", "3165 | \n", "Town | \n", "Hillary Clinton | \n", "False | \n", "Joe Biden | \n", "trump | \n", "Extremely worried | \n", "Moderate | \n", "Democrat | \n", "Oppose a great deal | \n", "... | \n", "70.0 | \n", "neutral | \n", "60 | \n", "3600 | \n", "70.0 | \n", "70.0 | \n", "70.0 | \n", "True | \n", "True | \n", "False | \n", "
3165 rows × 61 columns
\n", "problem_trump | \n", "False | \n", "True | \n", "
---|---|---|
partyID | \n", "\n", " | \n", " |
Democrat | \n", "1030 | \n", "293 | \n", "
Independent | \n", "479 | \n", "47 | \n", "
Republican | \n", "1122 | \n", "73 | \n", "
\n", " | 0 | \n", "1 | \n", "2 | \n", "3 | \n", "4 | \n", "5 | \n", "6 | \n", "7 | \n", "8 | \n", "9 | \n", "... | \n", "19 | \n", "20 | \n", "21 | \n", "22 | \n", "23 | \n", "24 | \n", "25 | \n", "26 | \n", "27 | \n", "28 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Health Care | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "... | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "
1 | \n", "Working together | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "... | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "
2 | \n", "health care | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "... | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "
3 | \n", "The economy | \n", "\n", " | None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "... | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "
4 | \n", "China | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "... | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
3160 | \n", "The infiltration of Marxists into the institut... | \n", "Money seems to be no object to them | \n", "Their over promising will lead to eventual chaos | \n", "Usually that leads to the over promised event... | \n", "\n", " | None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "... | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "
3161 | \n", "Lack of basic resources being provided and off... | \n", "This is a first world nation, a nation claimi... | \n", "yet we don't have housing or healthcare secur... | \n", "That needs to change and it needs to be chang... | \n", "A basic standard of living needs to be guaran... | \n", "\n", " | None | \n", "None | \n", "None | \n", "None | \n", "... | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "
3162 | \n", "donald trump | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "... | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "
3163 | \n", "Donald Trump | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "... | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "
3164 | \n", "trump | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "... | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "None | \n", "
3165 rows × 29 columns
\n", "\n", " | 0 | \n", "1 | \n", "2 | \n", "
---|---|---|---|
0 | \n", "Health Care | \n", "None | \n", "None | \n", "
1 | \n", "Working together | \n", "None | \n", "None | \n", "
2 | \n", "health care | \n", "None | \n", "None | \n", "
3 | \n", "The economy | \n", "\n", " | None | \n", "
4 | \n", "China | \n", "None | \n", "None | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "
3160 | \n", "The infiltration of Marxists into the institut... | \n", "Money seems to be no object to them | \n", "Their over promising will lead to eventual ch... | \n", "
3161 | \n", "Lack of basic resources being provided and off... | \n", "This is a first world nation, a nation claimi... | \n", "yet we don't have housing or healthcare secur... | \n", "
3162 | \n", "donald trump | \n", "None | \n", "None | \n", "
3163 | \n", "Donald Trump | \n", "None | \n", "None | \n", "
3164 | \n", "trump | \n", "None | \n", "None | \n", "
3165 rows × 3 columns
\n", "\n", " | text | \n", "created_at | \n", "user | \n", "
---|---|---|---|
0 | \n", "@KymoraJohnson_ let me call @IamTinaThompson s... | \n", "2020-06-30 02:20:43 | \n", "SweetLickKing | \n", "
1 | \n", "Congrats Eric. It’s was really great to have w... | \n", "2020-06-30 02:18:17 | \n", "Daniel_B_Ennis | \n", "
2 | \n", "RT @KathrynsScGifts: \"OGX Fade-defying + Orchi... | \n", "2020-06-30 01:55:02 | \n", "blimeyonline1 | \n", "
3 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "2020-06-30 01:40:00 | \n", "Wahoos247 | \n", "
4 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "2020-06-30 01:39:42 | \n", "JamieOakes247 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "
995 | \n", "RT @AgNPalabras: #UVA: 54,87. Sube 0,20% diari... | \n", "2020-06-23 15:12:08 | \n", "norahlfy | \n", "
996 | \n", "#UVA: 54,87. Sube 0,20% diario, 1,22% en junio... | \n", "2020-06-23 15:08:40 | \n", "AgNPalabras | \n", "
997 | \n", "Zur Einstimmung #UVA vom letzten #gig bei uns ... | \n", "2020-06-23 14:52:23 | \n", "WeAppU | \n", "
998 | \n", "RT @JLuis_Sommelier: #Mosto: jugo obtenido de ... | \n", "2020-06-23 14:49:22 | \n", "VirialexViri | \n", "
999 | \n", "Good question... My instinct says Ty Jerome, b... | \n", "2020-06-23 14:32:44 | \n", "The_Superhoo | \n", "
1000 rows × 3 columns
\n", "\n", " | text | \n", "created_at | \n", "user | \n", "month | \n", "day | \n", "year | \n", "hour | \n", "minute | \n", "second | \n", "
---|---|---|---|---|---|---|---|---|---|
0 | \n", "@KymoraJohnson_ let me call @IamTinaThompson s... | \n", "2020-06-30 02:20:43 | \n", "SweetLickKing | \n", "6 | \n", "30 | \n", "2020 | \n", "2 | \n", "20 | \n", "43 | \n", "
1 | \n", "Congrats Eric. It’s was really great to have w... | \n", "2020-06-30 02:18:17 | \n", "Daniel_B_Ennis | \n", "6 | \n", "30 | \n", "2020 | \n", "2 | \n", "18 | \n", "17 | \n", "
2 | \n", "RT @KathrynsScGifts: \"OGX Fade-defying + Orchi... | \n", "2020-06-30 01:55:02 | \n", "blimeyonline1 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "55 | \n", "2 | \n", "
3 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "2020-06-30 01:40:00 | \n", "Wahoos247 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "40 | \n", "0 | \n", "
4 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "2020-06-30 01:39:42 | \n", "JamieOakes247 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "39 | \n", "42 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
995 | \n", "RT @AgNPalabras: #UVA: 54,87. Sube 0,20% diari... | \n", "2020-06-23 15:12:08 | \n", "norahlfy | \n", "6 | \n", "23 | \n", "2020 | \n", "15 | \n", "12 | \n", "8 | \n", "
996 | \n", "#UVA: 54,87. Sube 0,20% diario, 1,22% en junio... | \n", "2020-06-23 15:08:40 | \n", "AgNPalabras | \n", "6 | \n", "23 | \n", "2020 | \n", "15 | \n", "8 | \n", "40 | \n", "
997 | \n", "Zur Einstimmung #UVA vom letzten #gig bei uns ... | \n", "2020-06-23 14:52:23 | \n", "WeAppU | \n", "6 | \n", "23 | \n", "2020 | \n", "14 | \n", "52 | \n", "23 | \n", "
998 | \n", "RT @JLuis_Sommelier: #Mosto: jugo obtenido de ... | \n", "2020-06-23 14:49:22 | \n", "VirialexViri | \n", "6 | \n", "23 | \n", "2020 | \n", "14 | \n", "49 | \n", "22 | \n", "
999 | \n", "Good question... My instinct says Ty Jerome, b... | \n", "2020-06-23 14:32:44 | \n", "The_Superhoo | \n", "6 | \n", "23 | \n", "2020 | \n", "14 | \n", "32 | \n", "44 | \n", "
1000 rows × 9 columns
\n", "\n", " | text | \n", "created_at | \n", "user | \n", "month | \n", "day | \n", "year | \n", "hour | \n", "minute | \n", "second | \n", "timestamp | \n", "
---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "@KymoraJohnson_ let me call @IamTinaThompson s... | \n", "2020-06-30 02:20:43 | \n", "SweetLickKing | \n", "6 | \n", "30 | \n", "2020 | \n", "2 | \n", "20 | \n", "43 | \n", "2020-06-30 02:20:43 | \n", "
1 | \n", "Congrats Eric. It’s was really great to have w... | \n", "2020-06-30 02:18:17 | \n", "Daniel_B_Ennis | \n", "6 | \n", "30 | \n", "2020 | \n", "2 | \n", "18 | \n", "17 | \n", "2020-06-30 02:18:17 | \n", "
2 | \n", "RT @KathrynsScGifts: \"OGX Fade-defying + Orchi... | \n", "2020-06-30 01:55:02 | \n", "blimeyonline1 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "55 | \n", "2 | \n", "2020-06-30 01:55:02 | \n", "
3 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "2020-06-30 01:40:00 | \n", "Wahoos247 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "40 | \n", "0 | \n", "2020-06-30 01:40:00 | \n", "
4 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "2020-06-30 01:39:42 | \n", "JamieOakes247 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "39 | \n", "42 | \n", "2020-06-30 01:39:42 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
995 | \n", "RT @AgNPalabras: #UVA: 54,87. Sube 0,20% diari... | \n", "2020-06-23 15:12:08 | \n", "norahlfy | \n", "6 | \n", "23 | \n", "2020 | \n", "15 | \n", "12 | \n", "8 | \n", "2020-06-23 15:12:08 | \n", "
996 | \n", "#UVA: 54,87. Sube 0,20% diario, 1,22% en junio... | \n", "2020-06-23 15:08:40 | \n", "AgNPalabras | \n", "6 | \n", "23 | \n", "2020 | \n", "15 | \n", "8 | \n", "40 | \n", "2020-06-23 15:08:40 | \n", "
997 | \n", "Zur Einstimmung #UVA vom letzten #gig bei uns ... | \n", "2020-06-23 14:52:23 | \n", "WeAppU | \n", "6 | \n", "23 | \n", "2020 | \n", "14 | \n", "52 | \n", "23 | \n", "2020-06-23 14:52:23 | \n", "
998 | \n", "RT @JLuis_Sommelier: #Mosto: jugo obtenido de ... | \n", "2020-06-23 14:49:22 | \n", "VirialexViri | \n", "6 | \n", "23 | \n", "2020 | \n", "14 | \n", "49 | \n", "22 | \n", "2020-06-23 14:49:22 | \n", "
999 | \n", "Good question... My instinct says Ty Jerome, b... | \n", "2020-06-23 14:32:44 | \n", "The_Superhoo | \n", "6 | \n", "23 | \n", "2020 | \n", "14 | \n", "32 | \n", "44 | \n", "2020-06-23 14:32:44 | \n", "
1000 rows × 10 columns
\n", "\n", " | text | \n", "created_at | \n", "user | \n", "month | \n", "day | \n", "year | \n", "hour | \n", "minute | \n", "second | \n", "timestamp | \n", "
---|---|---|---|---|---|---|---|---|---|---|
created_at | \n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " |
2020-06-30 02:20:43 | \n", "@KymoraJohnson_ let me call @IamTinaThompson s... | \n", "2020-06-30 02:20:43 | \n", "SweetLickKing | \n", "6 | \n", "30 | \n", "2020 | \n", "2 | \n", "20 | \n", "43 | \n", "2020-06-30 02:20:43 | \n", "
2020-06-30 02:18:17 | \n", "Congrats Eric. It’s was really great to have w... | \n", "2020-06-30 02:18:17 | \n", "Daniel_B_Ennis | \n", "6 | \n", "30 | \n", "2020 | \n", "2 | \n", "18 | \n", "17 | \n", "2020-06-30 02:18:17 | \n", "
2020-06-30 01:55:02 | \n", "RT @KathrynsScGifts: \"OGX Fade-defying + Orchi... | \n", "2020-06-30 01:55:02 | \n", "blimeyonline1 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "55 | \n", "2 | \n", "2020-06-30 01:55:02 | \n", "
2020-06-30 01:40:00 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "2020-06-30 01:40:00 | \n", "Wahoos247 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "40 | \n", "0 | \n", "2020-06-30 01:40:00 | \n", "
2020-06-30 01:39:42 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "2020-06-30 01:39:42 | \n", "JamieOakes247 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "39 | \n", "42 | \n", "2020-06-30 01:39:42 | \n", "
2020-06-30 01:30:45 | \n", "RT @ThinakaranLK: சில இடங்களில் மழை பெய்யும் ச... | \n", "2020-06-30 01:30:45 | \n", "sumanebot | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "30 | \n", "45 | \n", "2020-06-30 01:30:45 | \n", "
2020-06-30 01:08:08 | \n", "We are🎉excited to🗣announce opening for in-pers... | \n", "2020-06-30 01:08:08 | \n", "GrandMarc_UVA | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "8 | \n", "8 | \n", "2020-06-30 01:08:08 | \n", "
2020-06-30 00:20:15 | \n", "RT @cavalierinsider: On Saturday, The Basketba... | \n", "2020-06-30 00:20:15 | \n", "annefutch | \n", "6 | \n", "30 | \n", "2020 | \n", "0 | \n", "20 | \n", "15 | \n", "2020-06-30 00:20:15 | \n", "
2020-06-30 00:19:00 | \n", "Anthony Harris part of NFL's top safety tandem... | \n", "2020-06-30 00:19:00 | \n", "hoosdaily | \n", "6 | \n", "30 | \n", "2020 | \n", "0 | \n", "19 | \n", "0 | \n", "2020-06-30 00:19:00 | \n", "
\n", " | text | \n", "created_at | \n", "user | \n", "month | \n", "day | \n", "year | \n", "hour | \n", "minute | \n", "second | \n", "timestamp | \n", "
---|---|---|---|---|---|---|---|---|---|---|
created_at | \n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " |
2020-06-29 14:54:31 | \n", "UVa alumni team opts out of 2020 TBT, plans to... | \n", "2020-06-29 14:54:31 | \n", "hoosdaily | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "54 | \n", "31 | \n", "2020-06-29 14:54:31 | \n", "
2020-06-29 14:54:26 | \n", "Ben Wallace Is a Proud Dad of Three Kids — Mee... | \n", "2020-06-29 14:54:26 | \n", "hoosdaily | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "54 | \n", "26 | \n", "2020-06-29 14:54:26 | \n", "
2020-06-29 14:51:16 | \n", "Inicia Sonora exportación de uva a Corea del S... | \n", "2020-06-29 14:51:16 | \n", "AgroTratos | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "51 | \n", "16 | \n", "2020-06-29 14:51:16 | \n", "
2020-06-29 14:50:46 | \n", "RT @Wahoos247: Wake Forest commitment Christia... | \n", "2020-06-29 14:50:46 | \n", "FatWhite101 | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "50 | \n", "46 | \n", "2020-06-29 14:50:46 | \n", "
2020-06-29 14:42:28 | \n", "RT @Cavs_Corner: Film Room: In the next instal... | \n", "2020-06-29 14:42:28 | \n", "oleuva | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "42 | \n", "28 | \n", "2020-06-29 14:42:28 | \n", "
2020-06-29 14:40:56 | \n", "RT @cavalierinsider: On Saturday, The Basketba... | \n", "2020-06-29 14:40:56 | \n", "John_Shifflett | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "40 | \n", "56 | \n", "2020-06-29 14:40:56 | \n", "
2020-06-29 14:37:11 | \n", "Tatil planları yapmaya başladıysan sana harika... | \n", "2020-06-29 14:37:11 | \n", "YasinALTINEL | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "37 | \n", "11 | \n", "2020-06-29 14:37:11 | \n", "
2020-06-29 14:35:52 | \n", "On Saturday, The Basketball Tournament will be... | \n", "2020-06-29 14:35:52 | \n", "cavalierinsider | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "35 | \n", "52 | \n", "2020-06-29 14:35:52 | \n", "
2020-06-29 14:29:17 | \n", "Jesse Rutherford of the Nelson County Board of... | \n", "2020-06-29 14:29:17 | \n", "JerryMillerNow | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "29 | \n", "17 | \n", "2020-06-29 14:29:17 | \n", "
2020-06-29 14:20:58 | \n", "RT @thesabre: NewsLink is updated! #UVA sports... | \n", "2020-06-29 14:20:58 | \n", "Slider_Hoos | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "20 | \n", "58 | \n", "2020-06-29 14:20:58 | \n", "
2020-06-29 14:20:44 | \n", "RT @Wahoos247: Wake Forest commitment Christia... | \n", "2020-06-29 14:20:44 | \n", "agee_brandon | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "20 | \n", "44 | \n", "2020-06-29 14:20:44 | \n", "
2020-06-29 14:18:33 | \n", "Ramseyer fondly recalls Cavs' perfect regular ... | \n", "2020-06-29 14:18:33 | \n", "hoosdaily | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "18 | \n", "33 | \n", "2020-06-29 14:18:33 | \n", "
2020-06-29 14:15:32 | \n", "Ben Wallace Is a Proud Dad of Three Kids — Mee... | \n", "2020-06-29 14:15:32 | \n", "hoosdaily | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "15 | \n", "32 | \n", "2020-06-29 14:15:32 | \n", "
2020-06-29 14:11:08 | \n", "NewsLink is updated! #UVA sports links all in ... | \n", "2020-06-29 14:11:08 | \n", "thesabre | \n", "6 | \n", "29 | \n", "2020 | \n", "14 | \n", "11 | \n", "8 | \n", "2020-06-29 14:11:08 | \n", "
\n", " | text | \n", "created_at | \n", "user | \n", "month | \n", "day | \n", "year | \n", "hour | \n", "minute | \n", "second | \n", "timestamp | \n", "
---|---|---|---|---|---|---|---|---|---|---|
created_at | \n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " |
2020-06-30 02:20:43 | \n", "@KymoraJohnson_ let me call @IamTinaThompson s... | \n", "2020-06-30 02:20:43 | \n", "SweetLickKing | \n", "6 | \n", "30 | \n", "2020 | \n", "2 | \n", "20 | \n", "43 | \n", "2020-06-30 02:20:43 | \n", "
2020-06-30 02:18:17 | \n", "Congrats Eric. It’s was really great to have w... | \n", "2020-06-30 02:18:17 | \n", "Daniel_B_Ennis | \n", "6 | \n", "30 | \n", "2020 | \n", "2 | \n", "18 | \n", "17 | \n", "2020-06-30 02:18:17 | \n", "
2020-06-30 01:55:02 | \n", "RT @KathrynsScGifts: \"OGX Fade-defying + Orchi... | \n", "2020-06-30 01:55:02 | \n", "blimeyonline1 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "55 | \n", "2 | \n", "2020-06-30 01:55:02 | \n", "
2020-06-30 01:40:00 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "2020-06-30 01:40:00 | \n", "Wahoos247 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "40 | \n", "0 | \n", "2020-06-30 01:40:00 | \n", "
2020-06-30 01:39:42 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "2020-06-30 01:39:42 | \n", "JamieOakes247 | \n", "6 | \n", "30 | \n", "2020 | \n", "1 | \n", "39 | \n", "42 | \n", "2020-06-30 01:39:42 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
2020-06-29 15:38:19 | \n", "#UvA Last week a number of practicals started ... | \n", "2020-06-29 15:38:19 | \n", "JJ_Angelus | \n", "6 | \n", "29 | \n", "2020 | \n", "15 | \n", "38 | \n", "19 | \n", "2020-06-29 15:38:19 | \n", "
2020-06-29 15:27:34 | \n", "Playing through: UVa golfers hone their games ... | \n", "2020-06-29 15:27:34 | \n", "hoosdaily | \n", "6 | \n", "29 | \n", "2020 | \n", "15 | \n", "27 | \n", "34 | \n", "2020-06-29 15:27:34 | \n", "
2020-06-29 15:27:29 | \n", "Playing through: UVa golfers hone their games ... | \n", "2020-06-29 15:27:29 | \n", "hoosdaily | \n", "6 | \n", "29 | \n", "2020 | \n", "15 | \n", "27 | \n", "29 | \n", "2020-06-29 15:27:29 | \n", "
2020-06-29 15:27:21 | \n", "Ramseyer fondly recalls Cavs' perfect regular ... | \n", "2020-06-29 15:27:21 | \n", "hoosdaily | \n", "6 | \n", "29 | \n", "2020 | \n", "15 | \n", "27 | \n", "21 | \n", "2020-06-29 15:27:21 | \n", "
2020-06-29 15:06:57 | \n", "While many college athletes have been unable t... | \n", "2020-06-29 15:06:57 | \n", "cavalierinsider | \n", "6 | \n", "29 | \n", "2020 | \n", "15 | \n", "6 | \n", "57 | \n", "2020-06-29 15:06:57 | \n", "
71 rows × 10 columns
\n", "\n", " | text | \n", "previous_tweet | \n", "next_tweet | \n", "
---|---|---|---|
created_at | \n", "\n", " | \n", " | \n", " |
2020-06-30 02:20:43 | \n", "@KymoraJohnson_ let me call @IamTinaThompson s... | \n", "Congrats Eric. It’s was really great to have w... | \n", "NaN | \n", "
2020-06-30 02:18:17 | \n", "Congrats Eric. It’s was really great to have w... | \n", "RT @KathrynsScGifts: \"OGX Fade-defying + Orchi... | \n", "@KymoraJohnson_ let me call @IamTinaThompson s... | \n", "
2020-06-30 01:55:02 | \n", "RT @KathrynsScGifts: \"OGX Fade-defying + Orchi... | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "Congrats Eric. It’s was really great to have w... | \n", "
2020-06-30 01:40:00 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "RT @KathrynsScGifts: \"OGX Fade-defying + Orchi... | \n", "
2020-06-30 01:39:42 | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "RT @ThinakaranLK: சில இடங்களில் மழை பெய்யும் ச... | \n", "Former #UVA stars Quin Blanding, Micah Kiser n... | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "
2020-06-23 15:12:08 | \n", "RT @AgNPalabras: #UVA: 54,87. Sube 0,20% diari... | \n", "#UVA: 54,87. Sube 0,20% diario, 1,22% en junio... | \n", "WATCH: Top plays of UVA's 2019-20 basketball s... | \n", "
2020-06-23 15:08:40 | \n", "#UVA: 54,87. Sube 0,20% diario, 1,22% en junio... | \n", "Zur Einstimmung #UVA vom letzten #gig bei uns ... | \n", "RT @AgNPalabras: #UVA: 54,87. Sube 0,20% diari... | \n", "
2020-06-23 14:52:23 | \n", "Zur Einstimmung #UVA vom letzten #gig bei uns ... | \n", "RT @JLuis_Sommelier: #Mosto: jugo obtenido de ... | \n", "#UVA: 54,87. Sube 0,20% diario, 1,22% en junio... | \n", "
2020-06-23 14:49:22 | \n", "RT @JLuis_Sommelier: #Mosto: jugo obtenido de ... | \n", "Good question... My instinct says Ty Jerome, b... | \n", "Zur Einstimmung #UVA vom letzten #gig bei uns ... | \n", "
2020-06-23 14:32:44 | \n", "Good question... My instinct says Ty Jerome, b... | \n", "NaN | \n", "RT @JLuis_Sommelier: #Mosto: jugo obtenido de ... | \n", "
1000 rows × 3 columns
\n", "